Scikit-learn-intelex 2025.5.0 版本发布:性能优化与新功能解析
Scikit-learn-intelex 是英特尔针对 scikit-learn 机器学习库开发的性能优化扩展,它通过利用英特尔硬件加速技术显著提升了 scikit-learn 算法的执行效率。最新发布的 2025.5.0 版本带来了一系列令人振奋的改进和新特性,特别是在线性模型和 XGBoost 集成方面。
核心性能优化
本次版本在数据处理流程中实现了显著的性能提升。通过优化 validate_data
和 _check_sample_weight
函数对 array_api 输入的处理,现在能够更高效地处理大规模数据集。这一改进特别有利于需要频繁数据验证的场景,如交叉验证和超参数调优。
对于决策树算法,开发团队修复了 .values
属性的标准化问题,使其行为与原生 scikit-learn 完全一致,确保了算法输出的可预测性和兼容性。
线性模型增强
新版本为线性回归模型引入了多个新参数,为用户提供了更灵活的模型配置选项。这些参数扩展了模型的表达能力,使数据科学家能够更精确地控制模型行为。
特别值得一提的是,现在逻辑回归模型构建器新增了包含 .predict()
方法的类,这一改进简化了模型部署流程,使得从训练到预测的过渡更加无缝。
XGBoost 集成改进
XGBoost 相关的增强是本次更新的亮点之一:
- 模型构建器现在能够处理涉及链接函数的 XGBoost 回归模型,扩展了模型的应用场景。
- 修复了
base_score
缩放问题,确保了回归目标的正确计算。 - 改进了模型转换流程,现在将 XGBoost 模型转换为 daal4py 格式后,原始模型对象仍保持有效状态,避免了不必要的重新训练。
系统兼容性优化
针对不同硬件配置的用户,开发团队修复了当 SYCL CPU 设备不可用时 csr k-Means 初始化的卸载问题,提高了算法在各种环境下的稳定性。这一改进特别有利于异构计算环境和云部署场景。
技术影响与展望
2025.5.0 版本的发布标志着 Scikit-learn-intelex 在算法覆盖范围和性能优化方面又迈出了重要一步。特别是对 XGBoost 和线性模型的增强,使得这些常用算法在英特尔硬件上的表现更加出色。
对于数据科学家和机器学习工程师而言,这些改进意味着他们可以在不改变现有工作流程的情况下,获得显著的性能提升。新引入的参数和方法也提供了更大的灵活性,有助于构建更精确的预测模型。
随着人工智能应用对计算效率要求的不断提高,Scikit-learn-intelex 这样的优化工具将在实际应用中发挥越来越重要的作用。未来,我们可以期待该项目在支持更多算法和进一步优化现有实现方面持续发力。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









