Phidata项目中消息历史存储冗余问题的分析与优化
2025-05-07 16:39:25作者:余洋婵Anita
问题背景
在Phidata项目的Agent实现中,当启用存储功能用于创建记忆、摘要等功能时,系统会保留聊天历史的冗余副本。这种现象导致了存储空间的膨胀,并影响了系统响应效率。特别是在使用Firestore等NoSQL数据库作为存储后端时,这一问题表现得尤为明显。
技术实现分析
当前系统的消息存储机制采用了双重存储策略:
- 全局消息存储:在session["memory"]中保存了整个会话期间的所有消息
- 运行级别存储:在session["memory"]["response"]["runs"]中保存了每次Agent运行时发送给模型的具体消息
当配置参数num_history_responses设置为较大数值时(如30),系统会将过去多次运行的消息都包含在模型上下文中,这导致了两处存储的内容高度相似。
问题本质
深入分析后,我们可以发现几个关键问题点:
- 存储冗余:系统在多个位置保存了相同的消息内容,特别是当包含长篇系统指令时,这种冗余会显著增加存储开销
- 历史消息获取逻辑:当前实现通过遍历所有运行记录来获取历史消息,而实际上这些信息已经完整保存在最近一次运行记录中
- 参数命名误导:
num_history_responses参数实际控制的是考虑多少个"运行"而非消息数量,这与参数名称的直观理解存在偏差
性能影响
这种实现方式在长时间对话场景下会带来明显的性能问题:
- 存储空间膨胀:每次运行都会复制之前的消息历史,导致存储需求呈线性增长
- 网络传输开销:在云端部署场景下,大量冗余数据的传输会增加延迟
- 处理时间增加:系统需要遍历多个运行记录来构建消息历史,增加了处理时间
优化方案
经过技术评估,我们提出以下优化方向:
- 简化存储结构:仅保留最近一次运行的完整记录,避免消息的多重存储
- 优化历史获取逻辑:直接从最近运行记录中获取完整消息历史,避免遍历所有运行记录
- 参数语义调整:考虑将
num_history_responses重命名为更能反映其实际功能的名称,如num_historical_runs
实现示例
基于上述分析,我们可以实现一个轻量级的AgentMemory子类:
class LightAgentMemory(AgentMemory):
"""
优化版的AgentMemory实现,仅保留最近一次运行记录
避免存储冗余消息导致的性能问题
"""
def add_run(self, agent_run: AgentRun) -> None:
"""
重写add_run方法,仅存储最新运行记录
并清理不必要的冗余数据
"""
agent_run.response.extra_data = None
agent_run.response.messages = None
agent_run.response.metrics = None
self.runs = [agent_run]
def get_messages_from_last_n_runs(self, last_n: Optional[int] = None, skip_role: Optional[str] = None) -> List[Message]:
"""直接从messages列表获取历史消息,避免遍历运行记录"""
return [message for message in self.messages]
技术权衡
在优化过程中,我们需要考虑以下技术权衡点:
- 上下文完整性:确保优化后的实现仍能维护对话上下文的完整性,特别是在处理工具调用等场景
- 向后兼容:保持与现有API的兼容性,避免破坏现有集成
- 性能与功能平衡:在减少存储开销的同时,不牺牲核心功能
结论
通过对Phidata项目中消息历史存储机制的深入分析和优化,我们可以显著提升系统在长时间对话场景下的性能表现。这种优化特别有利于包含大量系统指令或频繁交互的应用场景。建议开发者在实现类似功能时,充分考虑存储效率和性能优化的平衡,采用更合理的数据结构来管理对话历史。
对于已经部署的系统,可以考虑逐步迁移到优化后的存储方案,同时保持对旧格式的兼容处理。这种优化不仅能减少存储成本,还能提升终端用户的交互体验,使系统响应更加迅速流畅。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355