首页
/ iSAM:稀疏非线性优化库的实战指南

iSAM:稀疏非线性优化库的实战指南

2024-09-25 18:32:17作者:咎竹峻Karen

项目介绍

iSAM(Incremental Smoothing and Mapping)是由Michael Kaess等人在2012年开发的一个开源库,专注于解决SLAM(Simultaneous Localization And Mapping,即同步定位与建图)领域内的稀疏非线性优化问题。它不仅支持标准的批处理优化,还能高效地处理随时间增长的变量和约束集的增量优化。该库利用QR矩阵分解来解正规方程,并采用高斯-牛顿法、Powell的方法或仅在批量模式下的Levenberg-Marquardt算法来处理非线性约束。iSAM的设计允许用户轻松扩展以适应其他类型的稀疏最小二乘问题,包括自定义节点和因子。

项目快速启动

要快速启动并运行iSAM项目,请遵循以下步骤:

环境准备

确保你的开发环境已安装了Git、CMake以及必要的编译工具链(如GCC或Clang)。

克隆项目

git clone https://github.com/ori-drs/isam.git
cd isam

构建项目

首先,创建一个构建目录并进入:

mkdir build && cd build

然后,使用CMake配置项目,并使用适当的编译器进行构建:

cmake ..
make

这将编译库文件及示例程序。

运行示例

在成功构建之后,你可以通过运行某个示例程序来测试安装是否正确。例如,如果iSAM提供了示例可执行文件example_isam,则可以通过以下命令执行:

./bin/example_isam

请注意,实际的示例名称需参照项目中的bin目录。

应用案例和最佳实践

iSAM常用于复杂的机器人导航系统和视觉SLAM应用中。最佳实践包括:

  • 初始化:正确初始化变量和因子图是至关重要的。
  • 增量更新:利用iSAM的特性持续更新优化问题,尤其是在实时SLAM过程中。
  • 内存管理:由于其增量性质,理解何时清除旧数据对于保持性能至关重要。
  • 效率优化:自定义因子和节点时,优化Jacobian计算可以显著提升性能。

典型生态项目

虽然iSAM本身聚焦于核心的优化算法,但它的应用广泛,常常与其他机器人操作框架结合,比如ROS(Robot Operating System)。开发者会在ROS中封装iSAM,以提供高级SLAM解决方案,例如用于无人车和无人机的导航。此外,研究者和工程师经常将iSAM应用于新场景的探索,例如增强现实、三维重建等,这些应用通常会结合特定领域的传感器数据和算法。

在实践中,查看ROS相关的包或者学术界的应用论文,可以发现许多iSAM的成功案例和最佳实践应用实例。


以上就是关于iSAM的基本使用指南,包括从获取源码到运行第一个示例的全过程,及其在技术生态系统中的位置。记得查阅项目的官方文档和社区资源,以获取更深入的知识和技术细节。

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5