State Machine Cat 使用教程
1. 项目介绍
State Machine Cat(简称 smcat)是一个用于编写和可视化状态图的工具。它支持多种输入格式(如 smcat、JSON、SCXML),并能生成多种输出格式(如 SVG、DOT、JSON、SCXML)。smcat 的设计目标是让用户能够以最少的努力创建美观的状态图,而无需与拖放工具交互或深入了解 GraphViz 的复杂性。
2. 项目快速启动
安装
首先,你需要安装 Node.js 和 npm。然后,通过 npm 全局安装 smcat:
npm install --global state-machine-cat
使用
安装完成后,你可以通过命令行使用 smcat 命令来生成状态图。以下是一个简单的示例:
smcat -T svg <<EOF
initial => "on backlog" : item adds most value
"on backlog" => doing : working on it
doing => testing : built & unit tested
testing => "on backlog" : test not ok
testing => final : test ok
EOF
这个命令将生成一个 SVG 格式的状态图,并将其输出到标准输出。你可以通过 -o 选项指定输出文件:
smcat -T svg -o output.svg <<EOF
initial => "on backlog" : item adds most value
"on backlog" => doing : working on it
doing => testing : built & unit tested
testing => "on backlog" : test not ok
testing => final : test ok
EOF
嵌入 HTML
你还可以将 smcat 嵌入到 HTML 页面中,生成动态状态图。首先,在 HTML 文件的 <head> 部分引入 smcat 的脚本:
<script src="https://state-machine-cat.js.org/state-machine-cat-inpage.min.js" type="module" defer></script>
然后在 <body> 部分添加一个脚本标签,指定 type="text/x-smcat":
<script type="text/x-smcat">
on [color="darkgreen" active]
off [color="maroon"]
on => off [color="red"]: flickSwitch() / makeNoise("off.wav")
off => on [color="#009900"]: flickSwitch() / makeNoise("on.wav")
</script>
3. 应用案例和最佳实践
应用案例
-
软件开发中的状态管理:在开发复杂的软件系统时,状态管理是一个关键问题。smcat 可以帮助开发者可视化系统的状态转换,从而更好地理解和设计状态机。
-
协议设计:在设计通信协议时,状态图可以帮助开发者清晰地描述协议的状态和转换条件。smcat 可以生成协议的状态图,便于团队成员理解和审查。
-
业务流程建模:在业务流程建模中,状态图可以用来描述业务流程中的各个状态和转换条件。smcat 可以帮助业务分析师快速创建和分享业务流程图。
最佳实践
-
使用注释:在状态图中添加注释可以帮助读者更好地理解状态和转换的含义。smcat 支持在状态图中添加注释。
-
使用颜色和样式:通过为状态和转换添加颜色和样式,可以使状态图更加直观和易于理解。smcat 支持为状态和转换添加颜色和样式。
-
导出多种格式:smcat 支持导出多种格式的状态图,如 SVG、DOT、JSON 等。根据不同的需求选择合适的输出格式。
4. 典型生态项目
-
GraphViz:smcat 使用 GraphViz 作为渲染引擎,生成状态图。GraphViz 是一个强大的图形可视化工具,支持多种布局算法。
-
Vim 插件:对于 Vim 用户,可以使用
ambagasdowa/vim-syntax-smcat插件来为 smcat 文件提供语法高亮。 -
Atom 插件:对于 Atom 编辑器用户,可以使用
tree-sitter-smcat插件来为 smcat 文件提供语法高亮和解析支持。
通过这些生态项目,你可以进一步提升 smcat 的使用体验和效率。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00