MIRNet 开源项目教程
2024-09-18 20:37:33作者:乔或婵
1. 项目介绍
MIRNet(Multi-scale Image Restoration and Enhancement Network)是一个用于图像恢复和增强的开源项目。该项目在 ECCV 2020 上发布,旨在通过学习丰富的特征来恢复高质量的图像内容。MIRNet 在图像去噪、超分辨率和图像增强等任务上取得了最先进的结果。
主要特点
- 多尺度特征提取:通过并行的多分辨率卷积流提取多尺度特征。
- 信息交换:在多分辨率流之间进行信息交换,以增强特征的上下文信息。
- 注意力机制:使用空间和通道注意力机制来捕捉上下文信息。
- 多尺度特征聚合:基于注意力的多尺度特征聚合,以保持高分辨率的空间细节。
2. 项目快速启动
安装依赖
首先,确保你已经安装了 Python 3.7 和 PyTorch 1.1.0。然后,按照以下步骤安装其他依赖项:
sudo apt-get install cmake build-essential libjpeg-dev libpng-dev
conda create -n pytorch1 python=3.7
conda activate pytorch1
conda install pytorch=1.1 torchvision=0.3 cudatoolkit=9.0 -c pytorch
pip install matplotlib scikit-image opencv-python yacs joblib natsort h5py tqdm
下载数据集
下载 SIDD-Medium 数据集并生成图像补丁:
python generate_patches_SIDD.py --ps 256 --num_patches 300 --num_cores 10
训练模型
使用默认参数训练模型:
python train_denoising.py
评估模型
下载预训练模型并进行评估:
python test_denoising_sidd.py --save_images
3. 应用案例和最佳实践
图像去噪
MIRNet 在图像去噪任务中表现出色。以下是一个使用预训练模型对 SIDD 数据集进行去噪的示例:
python test_denoising_sidd.py --save_images
图像超分辨率
MIRNet 也可以用于图像超分辨率任务。以下是一个使用预训练模型对图像进行超分辨率的示例:
python test_super_resolution.py --save_images --scale 3
图像增强
MIRNet 在图像增强任务中同样表现优异。以下是一个使用预训练模型对 LOL 数据集进行图像增强的示例:
python test_enhancement.py --save_images --input_dir /datasets/lol/ --result_dir /results/enhancement/lol/ --weights /pretrained_models/enhancement/model_lol.pth
4. 典型生态项目
TensorFlow 实现
除了 PyTorch 实现外,MIRNet 还有 TensorFlow 实现,由 Soumik Rakshit 提供:
- GitHub 链接: soumik12345/MIRNet
TensorFlow.js 实现
Rishit Dagli 提供了 MIRNet 的 TensorFlow.js 实现,可以在浏览器中运行:
- GitHub 链接: rishit-dagli/MIRNet-TFJS
TensorFlow Lite 实现
Sayak Paul 提供了 MIRNet 的 TensorFlow Lite 实现,适用于移动设备:
- GitHub 链接: sayakpaul/MIRNet-TFLite
通过这些生态项目,MIRNet 可以在不同的平台和环境中得到应用,进一步扩展其应用范围。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
651
149
Ascend Extension for PyTorch
Python
212
222
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
640
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
251
319