MIRNet 开源项目教程
2024-09-18 01:45:05作者:乔或婵
1. 项目介绍
MIRNet(Multi-scale Image Restoration and Enhancement Network)是一个用于图像恢复和增强的开源项目。该项目在 ECCV 2020 上发布,旨在通过学习丰富的特征来恢复高质量的图像内容。MIRNet 在图像去噪、超分辨率和图像增强等任务上取得了最先进的结果。
主要特点
- 多尺度特征提取:通过并行的多分辨率卷积流提取多尺度特征。
- 信息交换:在多分辨率流之间进行信息交换,以增强特征的上下文信息。
- 注意力机制:使用空间和通道注意力机制来捕捉上下文信息。
- 多尺度特征聚合:基于注意力的多尺度特征聚合,以保持高分辨率的空间细节。
2. 项目快速启动
安装依赖
首先,确保你已经安装了 Python 3.7 和 PyTorch 1.1.0。然后,按照以下步骤安装其他依赖项:
sudo apt-get install cmake build-essential libjpeg-dev libpng-dev
conda create -n pytorch1 python=3.7
conda activate pytorch1
conda install pytorch=1.1 torchvision=0.3 cudatoolkit=9.0 -c pytorch
pip install matplotlib scikit-image opencv-python yacs joblib natsort h5py tqdm
下载数据集
下载 SIDD-Medium 数据集并生成图像补丁:
python generate_patches_SIDD.py --ps 256 --num_patches 300 --num_cores 10
训练模型
使用默认参数训练模型:
python train_denoising.py
评估模型
下载预训练模型并进行评估:
python test_denoising_sidd.py --save_images
3. 应用案例和最佳实践
图像去噪
MIRNet 在图像去噪任务中表现出色。以下是一个使用预训练模型对 SIDD 数据集进行去噪的示例:
python test_denoising_sidd.py --save_images
图像超分辨率
MIRNet 也可以用于图像超分辨率任务。以下是一个使用预训练模型对图像进行超分辨率的示例:
python test_super_resolution.py --save_images --scale 3
图像增强
MIRNet 在图像增强任务中同样表现优异。以下是一个使用预训练模型对 LOL 数据集进行图像增强的示例:
python test_enhancement.py --save_images --input_dir /datasets/lol/ --result_dir /results/enhancement/lol/ --weights /pretrained_models/enhancement/model_lol.pth
4. 典型生态项目
TensorFlow 实现
除了 PyTorch 实现外,MIRNet 还有 TensorFlow 实现,由 Soumik Rakshit 提供:
- GitHub 链接: soumik12345/MIRNet
TensorFlow.js 实现
Rishit Dagli 提供了 MIRNet 的 TensorFlow.js 实现,可以在浏览器中运行:
- GitHub 链接: rishit-dagli/MIRNet-TFJS
TensorFlow Lite 实现
Sayak Paul 提供了 MIRNet 的 TensorFlow Lite 实现,适用于移动设备:
- GitHub 链接: sayakpaul/MIRNet-TFLite
通过这些生态项目,MIRNet 可以在不同的平台和环境中得到应用,进一步扩展其应用范围。
登录后查看全文
热门项目推荐
- Ggpt-oss-20bgpt-oss-20b —— 适用于低延迟和本地或特定用途的场景(210 亿参数,其中 36 亿活跃参数)Jinja00
- Ggpt-oss-120bgpt-oss-120b是OpenAI开源的高性能大模型,专为复杂推理任务和智能代理场景设计。这款拥有1170亿参数的混合专家模型采用原生MXFP4量化技术,可单卡部署在H100 GPU上运行。它支持可调节的推理强度(低/中/高),完整思维链追溯,并内置函数调用、网页浏览等智能体能力。模型遵循Apache 2.0许可,允许自由商用和微调,特别适合需要生产级推理能力的开发者。通过Transformers、vLLM等主流框架即可快速调用,还能在消费级硬件通过Ollama运行,为AI应用开发提供强大而灵活的基础设施。【此简介由AI生成】Jinja00
- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
hello-uniapp
uni-app 是一个使用 Vue.js 开发所有前端应用的框架,开发者编写一套代码,可发布到iOS、Android、鸿蒙Next、Web(响应式)、以及各种小程序(微信/支付宝/百度/抖音/飞书/QQ/快手/钉钉/淘宝/京东/小红书)、快应用、鸿蒙元服务等多个平台Vue00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。05GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0256Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013RuoYi-Cloud-Plus
微服务管理系统 重写RuoYi-Cloud所有功能 整合 SpringCloudAlibaba、Dubbo3.0、Sa-Token、Mybatis-Plus、MQ、Warm-Flow工作流、ES、Docker 全方位升级 定期同步Java014
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
155
245

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
772
477

openGauss kernel ~ openGauss is an open source relational database management system
C++
117
171

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
136
256

一个支持csv文件的读写、解析的库
Cangjie
11
3

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
377
363

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
79
2

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.04 K
0

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
320
1.05 K

open-eBackup是一款开源备份软件,采用集群高扩展架构,通过应用备份通用框架、并行备份等技术,为主流数据库、虚拟化、文件系统、大数据等应用提供E2E的数据备份、恢复等能力,帮助用户实现关键数据高效保护。
HTML
114
77