MIRNet 开源项目教程
2024-09-18 01:45:05作者:乔或婵
1. 项目介绍
MIRNet(Multi-scale Image Restoration and Enhancement Network)是一个用于图像恢复和增强的开源项目。该项目在 ECCV 2020 上发布,旨在通过学习丰富的特征来恢复高质量的图像内容。MIRNet 在图像去噪、超分辨率和图像增强等任务上取得了最先进的结果。
主要特点
- 多尺度特征提取:通过并行的多分辨率卷积流提取多尺度特征。
- 信息交换:在多分辨率流之间进行信息交换,以增强特征的上下文信息。
- 注意力机制:使用空间和通道注意力机制来捕捉上下文信息。
- 多尺度特征聚合:基于注意力的多尺度特征聚合,以保持高分辨率的空间细节。
2. 项目快速启动
安装依赖
首先,确保你已经安装了 Python 3.7 和 PyTorch 1.1.0。然后,按照以下步骤安装其他依赖项:
sudo apt-get install cmake build-essential libjpeg-dev libpng-dev
conda create -n pytorch1 python=3.7
conda activate pytorch1
conda install pytorch=1.1 torchvision=0.3 cudatoolkit=9.0 -c pytorch
pip install matplotlib scikit-image opencv-python yacs joblib natsort h5py tqdm
下载数据集
下载 SIDD-Medium 数据集并生成图像补丁:
python generate_patches_SIDD.py --ps 256 --num_patches 300 --num_cores 10
训练模型
使用默认参数训练模型:
python train_denoising.py
评估模型
下载预训练模型并进行评估:
python test_denoising_sidd.py --save_images
3. 应用案例和最佳实践
图像去噪
MIRNet 在图像去噪任务中表现出色。以下是一个使用预训练模型对 SIDD 数据集进行去噪的示例:
python test_denoising_sidd.py --save_images
图像超分辨率
MIRNet 也可以用于图像超分辨率任务。以下是一个使用预训练模型对图像进行超分辨率的示例:
python test_super_resolution.py --save_images --scale 3
图像增强
MIRNet 在图像增强任务中同样表现优异。以下是一个使用预训练模型对 LOL 数据集进行图像增强的示例:
python test_enhancement.py --save_images --input_dir /datasets/lol/ --result_dir /results/enhancement/lol/ --weights /pretrained_models/enhancement/model_lol.pth
4. 典型生态项目
TensorFlow 实现
除了 PyTorch 实现外,MIRNet 还有 TensorFlow 实现,由 Soumik Rakshit 提供:
- GitHub 链接: soumik12345/MIRNet
TensorFlow.js 实现
Rishit Dagli 提供了 MIRNet 的 TensorFlow.js 实现,可以在浏览器中运行:
- GitHub 链接: rishit-dagli/MIRNet-TFJS
TensorFlow Lite 实现
Sayak Paul 提供了 MIRNet 的 TensorFlow Lite 实现,适用于移动设备:
- GitHub 链接: sayakpaul/MIRNet-TFLite
通过这些生态项目,MIRNet 可以在不同的平台和环境中得到应用,进一步扩展其应用范围。
热门项目推荐
相关项目推荐
- 国产编程语言蓝皮书《国产编程语言蓝皮书》-编委会工作区017
- nuttxApache NuttX is a mature, real-time embedded operating system (RTOS).C00
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX027
- 每日精选项目🔥🔥 01.17日推荐:一个开源电子商务平台,模块化和 API 优先🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~026
- Cangjie-Examples本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie045
- 毕方Talon工具本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python039
- PDFMathTranslatePDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython05
- mybatis-plusmybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript0108
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
热门内容推荐
最新内容推荐
《SIFTGPU:在GPU上实现尺度不变特征变换的安装与使用教程》 探索开源漫画阅读器ComicFlow:安装与使用教程 《USB Cam:开启ROS 2相机之旅》 深入探索ns-3-dev:开源网络模拟器的安装与使用指南 《lest测试框架的安装与使用教程》 《A-KAZE特征点的提取与匹配:开源项目实战指南》 《DS3232RTC库的安装与使用教程》 探索frePPLe:制造业供应链计划的开源解决方案安装与使用教程 《ROS-Industrial 基础培训教程:industrial_training 的安装与使用》 深入了解MultiVNC:跨平台Multicast支持的VNC查看器安装与使用教程
项目优选
收起
Python-100-Days
Python - 100天从新手到大师
Python
266
55
国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
65
17
Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
196
45
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
HarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
333
27
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
896
0
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
419
108
MateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
144
24
HarmonyOS-Cangjie-Cases
参考 HarmonyOS-Cases/Cases,提供仓颉开发鸿蒙 NEXT 应用的案例集
Cangjie
58
4