MIRNet 开源项目教程
2024-09-18 10:48:26作者:乔或婵
1. 项目介绍
MIRNet(Multi-scale Image Restoration and Enhancement Network)是一个用于图像恢复和增强的开源项目。该项目在 ECCV 2020 上发布,旨在通过学习丰富的特征来恢复高质量的图像内容。MIRNet 在图像去噪、超分辨率和图像增强等任务上取得了最先进的结果。
主要特点
- 多尺度特征提取:通过并行的多分辨率卷积流提取多尺度特征。
- 信息交换:在多分辨率流之间进行信息交换,以增强特征的上下文信息。
- 注意力机制:使用空间和通道注意力机制来捕捉上下文信息。
- 多尺度特征聚合:基于注意力的多尺度特征聚合,以保持高分辨率的空间细节。
2. 项目快速启动
安装依赖
首先,确保你已经安装了 Python 3.7 和 PyTorch 1.1.0。然后,按照以下步骤安装其他依赖项:
sudo apt-get install cmake build-essential libjpeg-dev libpng-dev
conda create -n pytorch1 python=3.7
conda activate pytorch1
conda install pytorch=1.1 torchvision=0.3 cudatoolkit=9.0 -c pytorch
pip install matplotlib scikit-image opencv-python yacs joblib natsort h5py tqdm
下载数据集
下载 SIDD-Medium 数据集并生成图像补丁:
python generate_patches_SIDD.py --ps 256 --num_patches 300 --num_cores 10
训练模型
使用默认参数训练模型:
python train_denoising.py
评估模型
下载预训练模型并进行评估:
python test_denoising_sidd.py --save_images
3. 应用案例和最佳实践
图像去噪
MIRNet 在图像去噪任务中表现出色。以下是一个使用预训练模型对 SIDD 数据集进行去噪的示例:
python test_denoising_sidd.py --save_images
图像超分辨率
MIRNet 也可以用于图像超分辨率任务。以下是一个使用预训练模型对图像进行超分辨率的示例:
python test_super_resolution.py --save_images --scale 3
图像增强
MIRNet 在图像增强任务中同样表现优异。以下是一个使用预训练模型对 LOL 数据集进行图像增强的示例:
python test_enhancement.py --save_images --input_dir /datasets/lol/ --result_dir /results/enhancement/lol/ --weights /pretrained_models/enhancement/model_lol.pth
4. 典型生态项目
TensorFlow 实现
除了 PyTorch 实现外,MIRNet 还有 TensorFlow 实现,由 Soumik Rakshit 提供:
- GitHub 链接: soumik12345/MIRNet
TensorFlow.js 实现
Rishit Dagli 提供了 MIRNet 的 TensorFlow.js 实现,可以在浏览器中运行:
- GitHub 链接: rishit-dagli/MIRNet-TFJS
TensorFlow Lite 实现
Sayak Paul 提供了 MIRNet 的 TensorFlow Lite 实现,适用于移动设备:
- GitHub 链接: sayakpaul/MIRNet-TFLite
通过这些生态项目,MIRNet 可以在不同的平台和环境中得到应用,进一步扩展其应用范围。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
698
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
280
React Native鸿蒙化仓库
JavaScript
270
328