Apache Storm 2.8.0版本发布:流处理引擎的重大更新
项目简介
Apache Storm是一个开源的分布式实时计算系统,它能够可靠地处理无界的数据流。Storm的设计目标是实现高吞吐量、低延迟的实时数据处理,广泛应用于实时分析、在线机器学习、持续计算等领域。作为一个成熟的流处理框架,Storm以其简单、可靠和可扩展的特性在业界获得了广泛应用。
版本核心更新
1. 最低Java版本要求提升至17
Apache Storm 2.8.0版本将最低Java运行环境要求从之前的版本提升到了Java 17。这一变更反映了项目对现代Java特性的依赖,同时也意味着用户需要升级他们的Java环境才能使用新版本。Java 17作为长期支持(LTS)版本,提供了更好的性能、安全性和语言特性支持。
2. 移除storm-hive模块
开发团队决定移除storm-hive模块,这是一个与Apache Hive集成的组件。这一决策可能基于几个因素:维护成本、使用率下降,或者有更好的替代方案出现。对于仍需要Hive集成的用户,可能需要寻找替代方案或自行实现相应功能。
3. 日志系统改进
2.8.0版本对日志系统进行了多项改进:
- 更新了Log4j2到更稳定的版本,解决了之前版本中存在的问题
- 当系统回退到Java序列化时增加了日志记录,帮助开发者诊断序列化相关问题
- 将SLF4J从1.7.36升级到2.0.16,提供了更现代的日志门面支持
4. 超时处理机制优化
从STORM-3693引入了超时tick机制,这一改进可能涉及任务执行超时的处理方式,使得系统在长时间运行的任务管理上更加健壮。开发团队还为此新增了单元测试,确保功能的稳定性。
5. Nimbus稳定性增强
修复了Nimbus在拓扑部署期间可能出现的停机问题。Nimbus作为Storm集群的主节点,其稳定性直接影响整个集群的可靠性。这一修复显著提升了大规模部署时的系统稳定性。
依赖项更新
Apache Storm 2.8.0对多个关键依赖进行了版本升级,包括但不限于:
- 测试框架Testcontainers升级到1.20.4
- Netty网络库升级到4.1.116.Final
- Guava工具库升级到33.4.0-jre
- RocksDB Java绑定升级到9.8.4
- Jersey框架升级到3.1.10
- Commons CSV升级到1.13.0
这些依赖项的更新不仅带来了性能改进和安全修复,也确保了Storm能够利用这些库的最新特性。
用户体验改进
2.8.0版本包含了一些针对用户体验的改进:
- 修复了UI中ComponentId解码问题,避免前端显示错误
- 增强了序列化失败时的日志记录,帮助开发者更快定位问题
开发者视角
对于开发者而言,这次升级需要注意以下几点:
- 必须将Java运行环境升级到17或更高版本
- 如果项目依赖storm-hive模块,需要寻找替代方案
- 日志系统的变更可能需要调整现有的日志配置
- 依赖库的更新可能影响现有代码的兼容性
总结
Apache Storm 2.8.0是一个重要的版本更新,它不仅提升了系统的稳定性和性能,还通过移除过时组件和升级依赖库使项目保持现代化。特别是Java 17的强制要求,标志着Storm项目对现代Java生态的全面拥抱。对于需要高可靠性实时流处理的用户,升级到2.8.0版本将获得更好的性能和更稳定的运行体验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C063
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00