Apache Fury中Map深拷贝性能优化实践
2025-06-25 19:41:33作者:瞿蔚英Wynne
背景与问题分析
在Apache Fury这一高性能序列化框架中,Map结构的深拷贝操作是一个常见但可能存在性能瓶颈的场景。当处理大规模Map数据时,传统的逐项拷贝方式会频繁执行类型检查和序列化器查找,这些操作在循环中重复执行会导致不必要的性能开销。
性能瓶颈根源
通过分析源码发现,当前实现存在两个主要性能问题:
- 类型信息重复获取:每次调用copyObject方法时都会重新获取ClassInfo对象
- 类型检查冗余:对于同构Map(键值类型相同或相近),重复的类型检查可以优化
优化方案设计
优化核心思路是利用Map数据同构性的特点,通过缓存类型信息减少重复操作:
- 类型信息缓存:在进入循环前预先获取并缓存键值类型的ClassInfo
- 专用拷贝方法:新增支持传入预获取ClassInfo的copyObject方法重载
- 空值检查优化:在拷贝前进行空值检查,避免不必要的类型处理
实现细节
优化后的关键代码逻辑如下:
protected <K, V> void copyEntry(Map<K, V> originMap, Map<K, V> newMap) {
ClassResolver classResolver = fury.getClassResolver();
for (Map.Entry<K, V> entry : originMap.entrySet()) {
K key = entry.getKey();
if (key != null) {
ClassInfo classInfo = classResolver.getClassInfo(key.getClass(), keyClassInfoWriteCache);
key = fury.copyObject(key, classInfo.getClassId());
}
V value = entry.getValue();
if (value != null) {
ClassInfo classInfo = classResolver.getClassInfo(value.getClass(), valueClassInfoWriteCache);
value = fury.copyObject(value, classInfo.getClassId());
}
newMap.put(key, value);
}
}
优化效果
这种优化方式特别适合以下场景:
- 大规模Map数据的深拷贝
- 键值类型相对固定的Map结构
- 嵌套层级较深的对象图拷贝
通过减少类型系统交互次数和缓存热点类型信息,可以显著提升序列化性能,特别是在处理同构数据时效果更为明显。
扩展应用
同样的优化思路可以应用于:
- 集合类型的深拷贝
- 对象数组的深拷贝
- 复杂对象图的序列化场景
这种基于类型信息缓存的优化模式为高性能序列化框架提供了一种通用优化思路,值得在其他类似场景中推广应用。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134