LangServe聊天小部件输出优化实践
2025-07-04 09:41:49作者:胡易黎Nicole
背景介绍
在使用LangServe构建聊天应用时,开发者经常会遇到一个常见问题:当使用内置的聊天小部件(Chat Widget)时,长文本响应会导致输出区域变得非常冗长,使得用户需要不断滚动页面才能找到"开始"按钮进行下一轮对话。这不仅影响用户体验,也降低了界面的美观度。
问题分析
LangServe的默认聊天小部件实现会将LLM的响应内容以单词为单位展开显示,这在处理短文本时没有问题,但当响应内容较长时,会导致输出区域异常膨胀。这种设计虽然展示了详细的输出结构,但在实际生产环境中并不实用。
解决方案
通过重构LCEL(语言链表达式)链,我们可以优化输出格式。核心思路是使用StrOutputParser将输出转换为单一字符串,而不是默认的单词列表形式。
优化后的代码实现
from langserve.schema import CustomUserType
from typing import List, Tuple
from pydantic import Field
from langchain_core.messages import BaseMessage, HumanMessage, AIMessage
from langchain_core.runnables import RunnableLambda, RunnableParallel, RunnablePassthrough
from langchain_openai import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
from operator import itemgetter
class ChatHistory(CustomUserType):
    chat_history: List[Tuple[str, str]] = Field(
        ...,
        examples=[[("human输入", "AI响应")]],
        extra={"widget": {"type": "chat", "input": "question", "output": "answer"}},
    )
    question: str
def _format_to_messages(input: ChatHistory) -> List[BaseMessage]:
    """将输入格式化为消息列表"""
    history = input.chat_history
    user_input = input.question
    messages = []
    for human, ai in history:
        messages.append(HumanMessage(content=human))
        messages.append(AIMessage(content=ai))
    messages.append(HumanMessage(content=user_input))
    return messages
model = ChatOpenAI()
chat_model = (
    RunnableLambda(_format_to_messages) 
    | model
    | {"answer": RunnablePassthrough() | StrOutputParser()}
    | {"answer": itemgetter("answer")}
).with_types(input_type=ChatHistory)
关键优化点
- 输出解析器:使用
StrOutputParser将模型输出转换为单一字符串 - 结果包装:通过
RunnablePassthrough保持数据流,同时应用输出解析 - 结构简化:最终使用
itemgetter提取需要的字段,确保输出结构简洁 
技术原理
这种优化方法的有效性基于LangChain的几个核心概念:
- Runnable组合:通过
|操作符将多个Runnable组件连接起来,形成数据处理流水线 - 类型转换:
StrOutputParser负责将模型的复杂输出转换为简单字符串 - 数据流控制:
RunnablePassthrough允许数据在不变的情况下通过管道,同时可以附加额外的处理步骤 
实际效果
优化后,聊天小部件的输出区域将显示为紧凑的单一字符串,而不是展开的单词列表。这带来了以下改进:
- 界面更加简洁,不再需要频繁滚动
 - 用户体验提升,可以快速进行下一轮对话
 - 保持了聊天历史记录的完整性和可读性
 
扩展思考
这种优化方法不仅适用于聊天小部件,也可以应用于其他需要简化输出的LangServe场景。开发者可以根据实际需求,选择不同的输出解析器或自定义输出格式处理逻辑,以获得最佳的用户体验。
对于更复杂的应用场景,还可以考虑:
- 添加输出长度限制
 - 实现自动滚动功能
 - 添加折叠/展开控制
 - 支持富文本格式输出
 
通过灵活运用LangChain的组件和LangServe的特性,开发者可以构建出既功能强大又用户友好的聊天应用界面。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
104
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
598
158
暂无简介
Dart
566
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
249
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
101
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446