LangServe聊天小部件输出优化实践
2025-07-04 07:21:34作者:胡易黎Nicole
背景介绍
在使用LangServe构建聊天应用时,开发者经常会遇到一个常见问题:当使用内置的聊天小部件(Chat Widget)时,长文本响应会导致输出区域变得非常冗长,使得用户需要不断滚动页面才能找到"开始"按钮进行下一轮对话。这不仅影响用户体验,也降低了界面的美观度。
问题分析
LangServe的默认聊天小部件实现会将LLM的响应内容以单词为单位展开显示,这在处理短文本时没有问题,但当响应内容较长时,会导致输出区域异常膨胀。这种设计虽然展示了详细的输出结构,但在实际生产环境中并不实用。
解决方案
通过重构LCEL(语言链表达式)链,我们可以优化输出格式。核心思路是使用StrOutputParser将输出转换为单一字符串,而不是默认的单词列表形式。
优化后的代码实现
from langserve.schema import CustomUserType
from typing import List, Tuple
from pydantic import Field
from langchain_core.messages import BaseMessage, HumanMessage, AIMessage
from langchain_core.runnables import RunnableLambda, RunnableParallel, RunnablePassthrough
from langchain_openai import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
from operator import itemgetter
class ChatHistory(CustomUserType):
chat_history: List[Tuple[str, str]] = Field(
...,
examples=[[("human输入", "AI响应")]],
extra={"widget": {"type": "chat", "input": "question", "output": "answer"}},
)
question: str
def _format_to_messages(input: ChatHistory) -> List[BaseMessage]:
"""将输入格式化为消息列表"""
history = input.chat_history
user_input = input.question
messages = []
for human, ai in history:
messages.append(HumanMessage(content=human))
messages.append(AIMessage(content=ai))
messages.append(HumanMessage(content=user_input))
return messages
model = ChatOpenAI()
chat_model = (
RunnableLambda(_format_to_messages)
| model
| {"answer": RunnablePassthrough() | StrOutputParser()}
| {"answer": itemgetter("answer")}
).with_types(input_type=ChatHistory)
关键优化点
- 输出解析器:使用
StrOutputParser将模型输出转换为单一字符串 - 结果包装:通过
RunnablePassthrough保持数据流,同时应用输出解析 - 结构简化:最终使用
itemgetter提取需要的字段,确保输出结构简洁
技术原理
这种优化方法的有效性基于LangChain的几个核心概念:
- Runnable组合:通过
|操作符将多个Runnable组件连接起来,形成数据处理流水线 - 类型转换:
StrOutputParser负责将模型的复杂输出转换为简单字符串 - 数据流控制:
RunnablePassthrough允许数据在不变的情况下通过管道,同时可以附加额外的处理步骤
实际效果
优化后,聊天小部件的输出区域将显示为紧凑的单一字符串,而不是展开的单词列表。这带来了以下改进:
- 界面更加简洁,不再需要频繁滚动
- 用户体验提升,可以快速进行下一轮对话
- 保持了聊天历史记录的完整性和可读性
扩展思考
这种优化方法不仅适用于聊天小部件,也可以应用于其他需要简化输出的LangServe场景。开发者可以根据实际需求,选择不同的输出解析器或自定义输出格式处理逻辑,以获得最佳的用户体验。
对于更复杂的应用场景,还可以考虑:
- 添加输出长度限制
- 实现自动滚动功能
- 添加折叠/展开控制
- 支持富文本格式输出
通过灵活运用LangChain的组件和LangServe的特性,开发者可以构建出既功能强大又用户友好的聊天应用界面。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135