LangServe聊天小部件输出优化实践
2025-07-04 23:16:20作者:胡易黎Nicole
背景介绍
在使用LangServe构建聊天应用时,开发者经常会遇到一个常见问题:当使用内置的聊天小部件(Chat Widget)时,长文本响应会导致输出区域变得非常冗长,使得用户需要不断滚动页面才能找到"开始"按钮进行下一轮对话。这不仅影响用户体验,也降低了界面的美观度。
问题分析
LangServe的默认聊天小部件实现会将LLM的响应内容以单词为单位展开显示,这在处理短文本时没有问题,但当响应内容较长时,会导致输出区域异常膨胀。这种设计虽然展示了详细的输出结构,但在实际生产环境中并不实用。
解决方案
通过重构LCEL(语言链表达式)链,我们可以优化输出格式。核心思路是使用StrOutputParser将输出转换为单一字符串,而不是默认的单词列表形式。
优化后的代码实现
from langserve.schema import CustomUserType
from typing import List, Tuple
from pydantic import Field
from langchain_core.messages import BaseMessage, HumanMessage, AIMessage
from langchain_core.runnables import RunnableLambda, RunnableParallel, RunnablePassthrough
from langchain_openai import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
from operator import itemgetter
class ChatHistory(CustomUserType):
chat_history: List[Tuple[str, str]] = Field(
...,
examples=[[("human输入", "AI响应")]],
extra={"widget": {"type": "chat", "input": "question", "output": "answer"}},
)
question: str
def _format_to_messages(input: ChatHistory) -> List[BaseMessage]:
"""将输入格式化为消息列表"""
history = input.chat_history
user_input = input.question
messages = []
for human, ai in history:
messages.append(HumanMessage(content=human))
messages.append(AIMessage(content=ai))
messages.append(HumanMessage(content=user_input))
return messages
model = ChatOpenAI()
chat_model = (
RunnableLambda(_format_to_messages)
| model
| {"answer": RunnablePassthrough() | StrOutputParser()}
| {"answer": itemgetter("answer")}
).with_types(input_type=ChatHistory)
关键优化点
- 输出解析器:使用
StrOutputParser将模型输出转换为单一字符串 - 结果包装:通过
RunnablePassthrough保持数据流,同时应用输出解析 - 结构简化:最终使用
itemgetter提取需要的字段,确保输出结构简洁
技术原理
这种优化方法的有效性基于LangChain的几个核心概念:
- Runnable组合:通过
|操作符将多个Runnable组件连接起来,形成数据处理流水线 - 类型转换:
StrOutputParser负责将模型的复杂输出转换为简单字符串 - 数据流控制:
RunnablePassthrough允许数据在不变的情况下通过管道,同时可以附加额外的处理步骤
实际效果
优化后,聊天小部件的输出区域将显示为紧凑的单一字符串,而不是展开的单词列表。这带来了以下改进:
- 界面更加简洁,不再需要频繁滚动
- 用户体验提升,可以快速进行下一轮对话
- 保持了聊天历史记录的完整性和可读性
扩展思考
这种优化方法不仅适用于聊天小部件,也可以应用于其他需要简化输出的LangServe场景。开发者可以根据实际需求,选择不同的输出解析器或自定义输出格式处理逻辑,以获得最佳的用户体验。
对于更复杂的应用场景,还可以考虑:
- 添加输出长度限制
- 实现自动滚动功能
- 添加折叠/展开控制
- 支持富文本格式输出
通过灵活运用LangChain的组件和LangServe的特性,开发者可以构建出既功能强大又用户友好的聊天应用界面。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1