PrestoDB/RPresto 复杂数据类型转换详解
2025-06-27 22:52:04作者:薛曦旖Francesca
前言
在数据分析工作中,我们经常需要处理各种复杂的数据结构。Presto作为一款强大的分布式SQL查询引擎,支持多种复杂数据类型(Complex Types),包括数组(ARRAY)、映射(MAP)和行(ROW)。本文将详细介绍如何在RPresto中将这些Presto复杂数据类型转换为R中的对应数据结构。
环境准备
版本要求
首先需要确保RPresto的版本在1.3.9或更高,以获得对复杂数据类型的全面支持:
packageVersion("RPresto")
建立连接
我们需要先建立与Presto服务器的连接:
con <- DBI::dbConnect(
drv = RPresto::Presto(),
host = "http://localhost",
port = 8080,
user = Sys.getenv("USER"),
catalog = "memory",
schema = "default"
)
复杂数据类型概述
Presto中的复杂数据类型主要有三种,它们在R中的对应关系如下:
| Presto类型 | 原子性 | 是否有键名 | R对应类型 |
|---|---|---|---|
| ARRAY | 是 | 否 | 无名称类型化向量 |
| MAP | 是 | 是 | 有名称类型化向量 |
| ROW | 否 | 是 | 命名列表或tibble |
数组(ARRAY)类型处理
基本特性
Presto中的ARRAY类型包含相同类型的元素,在R中对应为无名称的类型化向量。
创建测试表
我们可以创建一个包含各种基本类型数组的测试表:
RPresto:::create_primitive_arrays_table(
con, table_name = "presto_primitive_arrays", verbose = FALSE
)
数据转换示例
查询并转换数组数据:
df.array_of_primitive_types <- dbGetQuery(
con,
"SELECT * FROM presto_primitive_arrays",
bigint = "integer64"
)
验证转换结果:
# 检查类型
tibble::enframe(purrr::map_chr(df.array_of_primitive_types, ~class(.[[1]])[1]))
# 检查名称(应为NULL)
purrr::every(df.array_of_primitive_types, ~is.null(names(.[[1]])))
# 检查长度
tibble::enframe(purrr::map_int(df.array_of_primitive_types, ~length(.[[1]])))
映射(MAP)类型处理
基本特性
Presto中的MAP类型包含键值对,在R中对应为有名称的类型化向量。
创建测试表
创建包含各种基本类型映射的测试表:
RPresto:::create_primitive_maps_table(
con, table_name = "presto_primitive_maps", verbose = FALSE
)
数据转换示例
查询并转换映射数据:
df.map_of_primitive_types <- dbGetQuery(
con,
"SELECT * FROM presto_primitive_maps",
bigint = "integer64"
)
验证转换结果:
# 检查类型
tibble::enframe(purrr::map_chr(df.map_of_primitive_types, ~class(.[[1]])[1]))
# 检查名称(不应为NULL)
purrr::none(df.map_of_primitive_types, ~is.null(names(.[[1]])))
行(ROW)类型处理
基本特性
Presto中的ROW类型可以包含不同类型的元素,在R中的转换取决于是否重复:
- 单个ROW值 → 命名列表
- 重复ROW值(ARRAY of ROW)→ tibble
单个ROW处理
创建测试表:
RPresto:::create_primitive_rows_table(
con, table_name = "presto_primitive_rows", verbose = FALSE
)
数据转换示例:
df.row_of_primitive <- dbGetQuery(
con,
"SELECT row_primitive_types FROM presto_primitive_rows",
bigint = "integer64"
)
重复ROW处理
创建测试表:
RPresto:::create_array_of_rows_table(
con, table_name = "presto_array_of_rows", verbose = FALSE
)
数据转换示例:
df.array_of_rows <- dbGetQuery(
con,
"SELECT array_of_rows FROM presto_array_of_rows",
bigint = "integer64"
)
嵌套复杂类型处理
ARRAY of MAP
Presto支持嵌套复杂类型,如ARRAY of MAP,在R中转换为无名称列表,其中每个元素是有名称的类型化向量。
创建测试表:
RPresto:::create_array_of_maps_table(
con, table_name = "presto_array_of_maps", verbose = FALSE
)
数据转换示例:
df.array_of_maps <- dbGetQuery(
con,
"SELECT * FROM presto_array_of_maps",
bigint = "integer64"
)
最佳实践建议
- 版本检查:始终确保使用RPresto 1.3.9或更高版本
- 类型验证:转换后务必验证数据类型是否符合预期
- 性能考虑:处理大型复杂数据结构时注意内存使用
- 错误处理:对可能出现的转换错误添加适当的异常处理
总结
通过RPresto,我们可以方便地将Presto中的复杂数据类型转换为R中的对应数据结构。理解这些转换规则对于在R中有效处理Presto查询结果至关重要。本文介绍了各种复杂类型的转换方式,并提供了实际示例,希望能帮助读者更好地在R生态中使用Presto的强大功能。
# 最后记得关闭连接
DBI::dbDisconnect(con)
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
408
3.15 K
Ascend Extension for PyTorch
Python
226
252
暂无简介
Dart
674
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
321
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
React Native鸿蒙化仓库
JavaScript
263
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868