Django-Storages中Azure存储自定义域名问题的解决方案
问题背景
在使用Django-Storages与Azure Blob存储集成时,开发人员经常会遇到自定义域名配置的问题。当尝试在Django项目中使用自定义域名而非Azure默认的blob.core.windows.net域名时,系统在生成SAS令牌和URL时会遇到异常。
核心问题分析
问题的根本原因在于Azure存储服务的一个限制:SAS令牌必须使用标准的Azure存储账户域名(*.blob.core.windows.net)生成,而不能直接使用自定义域名。然而,Django-Storages的Azure后端在处理自定义域名时,会将所有请求(包括SAS令牌生成)都转向自定义域名,这导致了请求失败。
技术细节
-
SAS令牌生成机制:Azure要求SAS令牌必须通过标准域名生成,这是其安全模型的一部分。自定义域名主要用于前端展示和访问,不能用于后端认证操作。
-
Django-Storages的实现:当前实现中,当配置了
AZURE_CUSTOM_DOMAIN时,系统会创建一个"custom service client",所有操作都通过这个客户端进行,包括获取用户委托密钥和生成SAS令牌。 -
冲突点:当尝试通过自定义域名获取用户委托密钥时,Azure服务会拒绝请求,导致
get_user_delegation_key()方法抛出异常。
解决方案
经过社区讨论和测试,确定了以下解决方案:
-
分离域名使用:
- 使用标准域名(
*.blob.core.windows.net)进行所有后端操作,包括SAS令牌生成 - 仅在最终生成的URL中将域名替换为自定义域名
- 使用标准域名(
-
代码修改:
- 移除对"custom service client"的依赖
- 在URL生成阶段进行域名替换
关键修改点包括:
# 使用标准服务客户端获取用户委托密钥
self._user_delegation_key = self.service_client.get_user_delegation_key(
key_start_time=now, key_expiry_time=key_expiry_time
)
# 在生成URL时处理自定义域名
if self.custom_domain:
parsed_url = urlparse(container_blob_url)
new_netloc = self.custom_domain
container_blob_url = urlunparse(parsed_url._replace(netloc=new_netloc))
实现效果
这一修改带来了以下改进:
- 功能完整性:现在可以正常使用自定义域名,同时保持所有SAS令牌生成功能
- 兼容性:不影响现有代码中对
url属性的使用 - 安全性:仍然遵循Azure的安全最佳实践
最佳实践建议
-
配置建议:
- 同时设置
AZURE_ACCOUNT_NAME和AZURE_CUSTOM_DOMAIN - 确保自定义域名已正确配置CNAME记录指向Azure Blob存储
- 同时设置
-
权限设置:
- 确保使用的身份(如Managed Identity)具有"Storage Blob Delegator"角色
- 这是生成用户委托密钥所必需的
-
测试验证:
- 测试文件上传和下载功能
- 验证生成的URL格式是否正确
- 检查SAS令牌的有效期是否符合预期
总结
通过理解Azure存储服务的工作原理和Django-Storages的实现机制,我们找到了一个既保持功能完整又符合安全要求的解决方案。这一改进使得开发者能够更灵活地使用自定义域名,同时不影响系统的核心功能。对于需要在Django项目中使用Azure Blob存储并配置自定义域名的开发者来说,这一解决方案提供了可靠的技术支持。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00