CuPy v13.4.0 发布:支持 CUDA 12.8 和 Python 3.13 的新特性解析
CuPy 是一个基于 NumPy 接口的 GPU 加速计算库,专为高性能科学计算设计。它提供了与 NumPy 相似的 API,能够无缝地将 CPU 计算迁移到 NVIDIA GPU 和 AMD GPU 上,显著提升计算性能。CuPy 特别适合处理大规模数组运算、深度学习框架后端以及各种科学计算场景。
CUDA 12.8 和 Blackwell 架构支持
CuPy v13.4.0 正式加入了对 NVIDIA CUDA 12.8 的支持,这意味着开发者现在可以在最新的 CUDA 环境下使用 CuPy 进行 GPU 加速计算。这一更新特别引人注目的是对 NVIDIA 最新 Blackwell 架构 GPU(计算能力 sm_100 和 sm_120)的支持,为使用最新硬件的研究人员和开发者提供了性能优化的可能。
AMD ROCm 6.x 兼容性
对于 AMD GPU 用户,新版本解决了与 ROCm 6.x 的兼容性问题。通过修复 HIP 版本单位识别和指针属性获取等问题,CuPy 现在能够在 ROCm 6.2.2 等新版本环境中稳定运行,扩展了其在异构计算生态中的应用范围。
Python 3.13 支持
随着 Python 3.13 的发布,CuPy 迅速跟进,提供了对应的二进制包。这一更新确保了使用最新 Python 版本的开发者能够无缝集成 CuPy 到他们的工作流中。值得注意的是,为了支持 Python 3.13,CuPy 代码库已全面迁移到 Cython 3.0,这要求从源代码构建时需要 Cython 3.0 或更高版本。
性能优化与功能增强
新版本在多个方面进行了性能优化:
- 使用自定义的 less 和 min/max 实现替代了 thrust 和 CUB 的特化,可能带来特定场景下的性能提升
- 实现了 DLPack v1 标准,改善了与其他深度学习框架的互操作性
- 信号处理模块新增了 MVDR(最小方差无失真响应)算法实现
- 插值模块中的 RBF(径向基函数)实现更新至与 SciPy 1.13 兼容的版本
重要变更与兼容性说明
开发者需要注意以下重要变更:
- 构建要求从 Cython 0.29.x 升级到 Cython 3.0 或更高版本
- 开始采用 C++17 标准进行 JIT 编译,可能影响自定义内核的兼容性
- 稀疏数组创建现在会拒绝 3 维尝试,并抛出 ValueError
- 移除了已弃用的 cupy.array_api 子模块
问题修复与稳定性改进
v13.4.0 修复了多个关键问题:
- 解决了 64 位 nccl.broadcast 的支持问题
- 修复了 ROCm 5.7 中未注册指针导致的 hipPointerGetAttributes 错误
- 修正了 RNG 在指定非 float32/float64 类型时的内存分配问题
- 解决了 Windows 构建中的 /bigobj 需求
- 修复了量化计算中可能出现的崩溃问题
测试与质量保证
新版本大幅扩展了测试覆盖范围:
- 增加了对 NumPy 2.x 和 SciPy 1.14 的测试支持
- 为 CUDA 12.8 和 Python 3.13 添加了专门的 CI 测试
- 使用 ruff 替代 flake8 进行代码风格检查
- 改进了对稀疏矩阵操作的测试验证
总结
CuPy v13.4.0 是一个重要的版本更新,它不仅跟进了最新的硬件和软件生态(CUDA 12.8、ROCm 6.x、Python 3.13),还在性能优化、功能增强和稳定性方面做出了显著改进。对于科学计算和深度学习领域的工作者来说,升级到这个版本将能够获得更好的硬件支持、更稳定的运行体验以及潜在的性能提升。特别是那些计划使用最新 Blackwell 架构 GPU 的用户,这一更新将为他们提供必要的软件支持。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









