CuPy v13.4.0 发布:支持 CUDA 12.8 和 Python 3.13 的新特性解析
CuPy 是一个基于 NumPy 接口的 GPU 加速计算库,专为高性能科学计算设计。它提供了与 NumPy 相似的 API,能够无缝地将 CPU 计算迁移到 NVIDIA GPU 和 AMD GPU 上,显著提升计算性能。CuPy 特别适合处理大规模数组运算、深度学习框架后端以及各种科学计算场景。
CUDA 12.8 和 Blackwell 架构支持
CuPy v13.4.0 正式加入了对 NVIDIA CUDA 12.8 的支持,这意味着开发者现在可以在最新的 CUDA 环境下使用 CuPy 进行 GPU 加速计算。这一更新特别引人注目的是对 NVIDIA 最新 Blackwell 架构 GPU(计算能力 sm_100 和 sm_120)的支持,为使用最新硬件的研究人员和开发者提供了性能优化的可能。
AMD ROCm 6.x 兼容性
对于 AMD GPU 用户,新版本解决了与 ROCm 6.x 的兼容性问题。通过修复 HIP 版本单位识别和指针属性获取等问题,CuPy 现在能够在 ROCm 6.2.2 等新版本环境中稳定运行,扩展了其在异构计算生态中的应用范围。
Python 3.13 支持
随着 Python 3.13 的发布,CuPy 迅速跟进,提供了对应的二进制包。这一更新确保了使用最新 Python 版本的开发者能够无缝集成 CuPy 到他们的工作流中。值得注意的是,为了支持 Python 3.13,CuPy 代码库已全面迁移到 Cython 3.0,这要求从源代码构建时需要 Cython 3.0 或更高版本。
性能优化与功能增强
新版本在多个方面进行了性能优化:
- 使用自定义的 less 和 min/max 实现替代了 thrust 和 CUB 的特化,可能带来特定场景下的性能提升
- 实现了 DLPack v1 标准,改善了与其他深度学习框架的互操作性
- 信号处理模块新增了 MVDR(最小方差无失真响应)算法实现
- 插值模块中的 RBF(径向基函数)实现更新至与 SciPy 1.13 兼容的版本
重要变更与兼容性说明
开发者需要注意以下重要变更:
- 构建要求从 Cython 0.29.x 升级到 Cython 3.0 或更高版本
- 开始采用 C++17 标准进行 JIT 编译,可能影响自定义内核的兼容性
- 稀疏数组创建现在会拒绝 3 维尝试,并抛出 ValueError
- 移除了已弃用的 cupy.array_api 子模块
问题修复与稳定性改进
v13.4.0 修复了多个关键问题:
- 解决了 64 位 nccl.broadcast 的支持问题
- 修复了 ROCm 5.7 中未注册指针导致的 hipPointerGetAttributes 错误
- 修正了 RNG 在指定非 float32/float64 类型时的内存分配问题
- 解决了 Windows 构建中的 /bigobj 需求
- 修复了量化计算中可能出现的崩溃问题
测试与质量保证
新版本大幅扩展了测试覆盖范围:
- 增加了对 NumPy 2.x 和 SciPy 1.14 的测试支持
- 为 CUDA 12.8 和 Python 3.13 添加了专门的 CI 测试
- 使用 ruff 替代 flake8 进行代码风格检查
- 改进了对稀疏矩阵操作的测试验证
总结
CuPy v13.4.0 是一个重要的版本更新,它不仅跟进了最新的硬件和软件生态(CUDA 12.8、ROCm 6.x、Python 3.13),还在性能优化、功能增强和稳定性方面做出了显著改进。对于科学计算和深度学习领域的工作者来说,升级到这个版本将能够获得更好的硬件支持、更稳定的运行体验以及潜在的性能提升。特别是那些计划使用最新 Blackwell 架构 GPU 的用户,这一更新将为他们提供必要的软件支持。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0266cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









