Redux Toolkit 2.0 迁移中 getDefaultEnhancers 问题解析
问题背景
在从 Redux Toolkit 1.x 升级到 2.0 版本的过程中,开发者可能会遇到一个常见问题:getDefaultEnhancers is not a function 错误。这个问题通常出现在配置 Redux store 时,特别是在使用 configureStore API 时。
问题现象
当开发者按照 Redux Toolkit 2.0 的文档配置 store 时,可能会编写如下代码:
const store = configureStore({
reducer: rootReducer,
middleware: (getDefaultMiddleware) =>
getDefaultMiddleware().concat(additionalMiddleware),
enhancers: (getDefaultEnhancers) => {
return getDefaultEnhancers().concat(customEnhancer);
}
});
然而运行时却会遇到 getDefaultEnhancers is not a function 的错误提示。
根本原因
这个问题的主要原因是项目中实际上仍然在使用 Redux Toolkit 1.x 版本的代码。在 1.x 版本中,enhancers 配置项接收的是一个数组,而在 2.0 版本中,它接收的是一个回调函数。
具体差异:
- Redux Toolkit 1.x:
enhancers接收默认 enhancers 数组 - Redux Toolkit 2.0:
enhancers接收一个返回 enhancers 数组的函数
解决方案
要解决这个问题,可以采取以下步骤:
-
确认 Redux Toolkit 版本: 运行
npm ls @reduxjs/toolkit或yarn why @reduxjs/toolkit确认项目中实际使用的版本。 -
清理项目依赖: 删除
node_modules和 lock 文件(package-lock.json 或 yarn.lock),然后重新安装依赖。 -
检查导入路径: 确保所有从 Redux Toolkit 的导入路径都是正确的。在 2.0 版本中,一些内部路径发生了变化,特别是移除了
/dist路径。错误示例:
import { EntityState } from '@reduxjs/toolkit/dist/entities/models';正确示例:
import { EntityState } from '@reduxjs/toolkit'; -
更新类型定义: 注意 Redux Toolkit 2.0 中对类型系统的改进,如
EntityState现在需要显式指定 ID 类型。
最佳实践
为了避免这类问题,在升级 Redux Toolkit 时建议:
- 仔细阅读官方迁移指南
- 逐步升级,先解决主要 API 变更
- 使用 TypeScript 可以帮助捕获一些类型相关的错误
- 建立完善的测试覆盖,确保升级不会破坏现有功能
总结
Redux Toolkit 2.0 带来了许多改进,但在升级过程中可能会遇到一些兼容性问题。getDefaultEnhancers is not a function 错误通常表明项目中混合了 1.x 和 2.0 版本的代码。通过彻底检查依赖关系、更新导入路径和调整配置方式,可以顺利解决这个问题。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00