Seurat中DotPlot功能增强:基于特征基因的聚类分析
2025-07-02 06:00:45作者:董灵辛Dennis
概述
在单细胞RNA测序数据分析中,DotPlot是一种常用的可视化方法,能够同时展示基因表达水平和表达频率。标准的DotPlot功能通常只支持对细胞群(Idents)进行聚类,而缺乏对特征基因(features)进行聚类的能力。本文将介绍如何在Seurat中实现基于特征基因的聚类分析,以及相关的技术实现细节。
技术背景
DotPlot通过两个维度展示数据:
- 点的大小表示基因在细胞群中的表达频率
 - 点的颜色表示基因在细胞群中的平均表达水平
 
传统的DotPlot实现通常只支持对细胞群进行层次聚类,而无法对特征基因进行聚类排序。这限制了研究人员从基因表达模式中发现潜在生物学规律的能力。
实现方法
实现特征基因聚类主要涉及以下几个技术要点:
- 数据提取:从Seurat对象中提取特征基因的表达矩阵
 - 特征矩阵构建:计算每个特征基因在不同细胞群中的平均表达值
 - 数据标准化:对特征矩阵进行标准化处理,消除量纲影响
 - 层次聚类:使用欧氏距离和层次聚类算法对特征基因进行聚类
 - 结果重排序:根据聚类结果重新排列DotPlot中的基因顺序
 
关键技术实现
特征基因聚类的核心在于构建特征表达矩阵并进行聚类分析:
# 构建特征表达矩阵
feature.mat <- sapply(features, function(feature) 
  rowMeans(data.features[, feature, drop = FALSE], na.rm = TRUE)
# 转置矩阵使特征基因成为行
feature.mat <- t(feature.mat)
# 标准化处理
feature.mat <- scale(feature.mat)
# 层次聚类
hc <- hclust(dist(feature.mat))
# 根据聚类结果重排特征基因顺序
features <- features[hc$order]
应用价值
实现特征基因聚类后,DotPlot能够:
- 更直观地展示具有相似表达模式的基因簇
 - 帮助识别共表达的基因模块
 - 便于发现潜在的基因调控网络
 - 提高数据可视化的生物学解释性
 
注意事项
在使用特征基因聚类时需要注意:
- 特征基因数量不宜过少,否则聚类结果可能不稳定
 - 标准化处理对聚类结果有重要影响
 - 可以结合基因功能注释解释聚类结果
 - 对于大型数据集,需考虑计算效率问题
 
总结
通过扩展DotPlot的功能,使其支持特征基因聚类,可以显著提升单细胞数据分析的效率和深度。这种增强不仅保留了原始DotPlot的所有优点,还增加了从基因表达模式中发现生物学规律的能力,是单细胞数据分析中一个有价值的功能扩展。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
105
133
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
161
暂无简介
Dart
568
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
250
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
103
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446