Seurat中DotPlot功能增强:基于特征基因的聚类分析
2025-07-02 22:36:53作者:董灵辛Dennis
概述
在单细胞RNA测序数据分析中,DotPlot是一种常用的可视化方法,能够同时展示基因表达水平和表达频率。标准的DotPlot功能通常只支持对细胞群(Idents)进行聚类,而缺乏对特征基因(features)进行聚类的能力。本文将介绍如何在Seurat中实现基于特征基因的聚类分析,以及相关的技术实现细节。
技术背景
DotPlot通过两个维度展示数据:
- 点的大小表示基因在细胞群中的表达频率
- 点的颜色表示基因在细胞群中的平均表达水平
传统的DotPlot实现通常只支持对细胞群进行层次聚类,而无法对特征基因进行聚类排序。这限制了研究人员从基因表达模式中发现潜在生物学规律的能力。
实现方法
实现特征基因聚类主要涉及以下几个技术要点:
- 数据提取:从Seurat对象中提取特征基因的表达矩阵
- 特征矩阵构建:计算每个特征基因在不同细胞群中的平均表达值
- 数据标准化:对特征矩阵进行标准化处理,消除量纲影响
- 层次聚类:使用欧氏距离和层次聚类算法对特征基因进行聚类
- 结果重排序:根据聚类结果重新排列DotPlot中的基因顺序
关键技术实现
特征基因聚类的核心在于构建特征表达矩阵并进行聚类分析:
# 构建特征表达矩阵
feature.mat <- sapply(features, function(feature)
rowMeans(data.features[, feature, drop = FALSE], na.rm = TRUE)
# 转置矩阵使特征基因成为行
feature.mat <- t(feature.mat)
# 标准化处理
feature.mat <- scale(feature.mat)
# 层次聚类
hc <- hclust(dist(feature.mat))
# 根据聚类结果重排特征基因顺序
features <- features[hc$order]
应用价值
实现特征基因聚类后,DotPlot能够:
- 更直观地展示具有相似表达模式的基因簇
- 帮助识别共表达的基因模块
- 便于发现潜在的基因调控网络
- 提高数据可视化的生物学解释性
注意事项
在使用特征基因聚类时需要注意:
- 特征基因数量不宜过少,否则聚类结果可能不稳定
- 标准化处理对聚类结果有重要影响
- 可以结合基因功能注释解释聚类结果
- 对于大型数据集,需考虑计算效率问题
总结
通过扩展DotPlot的功能,使其支持特征基因聚类,可以显著提升单细胞数据分析的效率和深度。这种增强不仅保留了原始DotPlot的所有优点,还增加了从基因表达模式中发现生物学规律的能力,是单细胞数据分析中一个有价值的功能扩展。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217