Palworld服务器Docker镜像在ARM64架构下的内存优化实践
2025-06-30 19:50:50作者:董宙帆
背景介绍
Palworld作为一款热门的多人在线游戏,其服务器端通常运行在x86架构上。然而,随着ARM架构服务器(如AWS Graviton、Oracle Cloud ARM实例等)的普及,越来越多的用户尝试在ARM64环境中部署Palworld服务器。本文探讨了使用Docker容器在ARM64架构上运行Palworld服务器时遇到的内存管理问题及其解决方案。
问题现象
在ARM64架构的云服务器上,用户通过Docker容器部署Palworld服务器时,偶尔会遇到服务器崩溃的情况。错误日志中显示以下关键信息:
free(): invalid next size (normal)
Signal 6 caught.
Malloc Size=262146 LargeMemoryPoolOffset=262162
这种错误通常表明内存分配或释放过程中出现了异常,特别是在使用x86模拟器运行原生为x86架构编译的应用程序时。
技术分析
Palworld服务器二进制文件是为x86架构编译的,在ARM64架构上运行时需要借助模拟器。本项目采用了Box64作为x86到ARM64的模拟层。Box64是一个高效的x86_64用户空间模拟器,能够在ARM64设备上运行x86_64 Linux程序。
内存错误的发生通常与以下因素有关:
- 内存访问模式差异:x86和ARM架构对内存访问的约束不同
- 动态重新编译(Dynarec)策略:Box64使用的动态重新编译技术对内存操作的模拟
- 多线程同步问题:服务器程序的多线程特性与模拟环境的交互
解决方案
通过调整Box64的环境变量配置,可以显著提高Palworld服务器在ARM64上的稳定性。以下是经过验证的有效配置组合:
environment:
- BOX64_DYNAREC_STRONGMEM=3
- BOX64_DYNAREC_BIGBLOCK=0
- BOX64_DYNAREC_BLEEDING_EDGE=0
各参数的作用解释:
- BOX64_DYNAREC_STRONGMEM=3:启用严格的内存访问检查,级别3提供最严格的保护
- BOX64_DYNAREC_BIGBLOCK=0:禁用大块动态重新编译,减少内存压力
- BOX64_DYNAREC_BLEEDING_EDGE=0:使用稳定的动态重新编译功能,而非实验性功能
实施建议
对于在ARM64架构上部署Palworld服务器的用户,建议:
- 资源配置:确保服务器至少有4GB可用内存,推荐8GB以上
- 系统优化:在启动容器前执行内存清理
sudo sh -c 'echo 3 > /proc/sys/vm/drop_caches' - 监控:定期检查容器日志,关注内存相关警告
- 版本更新:保持Box64和Palworld服务器镜像为最新版本
架构选择考量
在ARM64上运行x86应用程序时,Box64相比其他模拟器(如FEX-Emu)具有明显优势:
- 轻量级:不需要完整的x86-64 RootFS,显著减少镜像体积
- 高效:针对ARM64优化的动态重新编译技术
- 配置灵活:丰富的环境变量可针对不同应用调优
结论
通过合理配置Box64模拟器的内存管理参数,可以在ARM64架构上稳定运行Palworld服务器。这种方法不仅解决了内存分配错误问题,还为其他x86应用程序在ARM环境中的运行提供了参考方案。随着ARM服务器生态的成熟,这种跨架构部署方案将变得越来越重要。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
196
80
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
273
310
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120