Palworld服务器Docker镜像在ARM64架构下的内存优化实践
2025-06-30 11:07:25作者:董宙帆
背景介绍
Palworld作为一款热门的多人在线游戏,其服务器端通常运行在x86架构上。然而,随着ARM架构服务器(如AWS Graviton、Oracle Cloud ARM实例等)的普及,越来越多的用户尝试在ARM64环境中部署Palworld服务器。本文探讨了使用Docker容器在ARM64架构上运行Palworld服务器时遇到的内存管理问题及其解决方案。
问题现象
在ARM64架构的云服务器上,用户通过Docker容器部署Palworld服务器时,偶尔会遇到服务器崩溃的情况。错误日志中显示以下关键信息:
free(): invalid next size (normal)
Signal 6 caught.
Malloc Size=262146 LargeMemoryPoolOffset=262162
这种错误通常表明内存分配或释放过程中出现了异常,特别是在使用x86模拟器运行原生为x86架构编译的应用程序时。
技术分析
Palworld服务器二进制文件是为x86架构编译的,在ARM64架构上运行时需要借助模拟器。本项目采用了Box64作为x86到ARM64的模拟层。Box64是一个高效的x86_64用户空间模拟器,能够在ARM64设备上运行x86_64 Linux程序。
内存错误的发生通常与以下因素有关:
- 内存访问模式差异:x86和ARM架构对内存访问的约束不同
- 动态重新编译(Dynarec)策略:Box64使用的动态重新编译技术对内存操作的模拟
- 多线程同步问题:服务器程序的多线程特性与模拟环境的交互
解决方案
通过调整Box64的环境变量配置,可以显著提高Palworld服务器在ARM64上的稳定性。以下是经过验证的有效配置组合:
environment:
- BOX64_DYNAREC_STRONGMEM=3
- BOX64_DYNAREC_BIGBLOCK=0
- BOX64_DYNAREC_BLEEDING_EDGE=0
各参数的作用解释:
- BOX64_DYNAREC_STRONGMEM=3:启用严格的内存访问检查,级别3提供最严格的保护
- BOX64_DYNAREC_BIGBLOCK=0:禁用大块动态重新编译,减少内存压力
- BOX64_DYNAREC_BLEEDING_EDGE=0:使用稳定的动态重新编译功能,而非实验性功能
实施建议
对于在ARM64架构上部署Palworld服务器的用户,建议:
- 资源配置:确保服务器至少有4GB可用内存,推荐8GB以上
- 系统优化:在启动容器前执行内存清理
sudo sh -c 'echo 3 > /proc/sys/vm/drop_caches' - 监控:定期检查容器日志,关注内存相关警告
- 版本更新:保持Box64和Palworld服务器镜像为最新版本
架构选择考量
在ARM64上运行x86应用程序时,Box64相比其他模拟器(如FEX-Emu)具有明显优势:
- 轻量级:不需要完整的x86-64 RootFS,显著减少镜像体积
- 高效:针对ARM64优化的动态重新编译技术
- 配置灵活:丰富的环境变量可针对不同应用调优
结论
通过合理配置Box64模拟器的内存管理参数,可以在ARM64架构上稳定运行Palworld服务器。这种方法不仅解决了内存分配错误问题,还为其他x86应用程序在ARM环境中的运行提供了参考方案。随着ARM服务器生态的成熟,这种跨架构部署方案将变得越来越重要。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
操作系统概念第六版PDF资源全面指南:适用场景与使用教程 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.24 K
Ascend Extension for PyTorch
Python
169
190
暂无简介
Dart
615
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
仓颉编程语言测试用例。
Cangjie
36
852
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258