model2vec-rs 的安装和配置教程
2025-05-24 01:03:09作者:邵娇湘
项目基础介绍和主要编程语言
model2vec-rs 是一个用 Rust 编写的开源项目,它提供了一个高效的 Model2Vec 静态嵌入模型的推理实现。Model2Vec 是一种从句子转换器中创建紧凑且快速静态嵌入模型的技术,可以显著减小模型大小并提高推理速度。该项目的目标是服务于需要快速生成嵌入的应用场景。
主要编程语言:Rust
项目使用的关键技术和框架
关键技术:
- Model2Vec:一种创建静态嵌入模型的技术。
- Rust:系统编程语言,注重性能和安全性。
框架:
- 无特定框架,model2vec-rs 是一个库,可以被集成到 Rust 项目中。
项目安装和配置的准备工作
在开始安装前,请确保您的系统中已经安装了以下工具:
- Rust 编译器:用于编译 Rust 代码。
- Cargo:Rust 的包管理器和构建工具。
如果您还没有安装 Rust 和 Cargo,可以访问 Rust 官方网站下载安装包进行安装。
详细安装步骤
步骤 1:安装 Rust 和 Cargo
访问 Rust 官方安装脚本 rustup.rs 并按照提示进行安装。
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs -o rustup.sh
chmod +x rustup.sh
./rustup.sh
按照屏幕上的提示完成安装。
步骤 2:安装 model2vec-rs
在确认 Rust 和 Cargo 安装完成后,打开命令行界面,执行以下命令来添加 model2vec-rs 作为项目依赖:
cargo add model2vec-rs
步骤 3:配置项目
在您的 Rust 项目中,将 model2vec-rs 添加到 Cargo.toml 文件的 [dependencies] 部分:
[dependencies]
model2vec-rs = "版本号"
请将 "版本号" 替换为 model2vec-rs 的最新版本。
步骤 4:编写示例代码
在您的 Rust 主函数中,编写如下示例代码来加载模型并生成嵌入:
use anyhow::Result;
use model2vec_rs::model::StaticModel;
fn main() -> Result<()> {
// 从 Hugging Face Hub 或本地路径加载模型
let model = StaticModel::from_pretrained("minishlab/potion-base-8M", None, None, None)?;
// 准备要嵌入的句子
let sentences = vec!["Hello world".to_string(), "Rust is awesome".to_string()];
// 生成嵌入
let embeddings = model.encode(&sentences);
// 打印结果
println!("Generated {} embeddings.", embeddings.len());
Ok(())
}
确保您已经将模型文件下载到了本地,或者可以直接从 Hugging Face Hub 访问。
完成以上步骤后,您就可以开始使用 model2vec-rs 进行开发了。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.7 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
140
170
暂无简介
Dart
598
130
React Native鸿蒙化仓库
JavaScript
235
309
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
634
232
仓颉编译器源码及 cjdb 调试工具。
C++
123
731
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
616
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
198
74
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460