UCI-ML-API 使用教程
2024-08-27 17:23:16作者:晏闻田Solitary
项目介绍
UCI-ML-API 是一个用于访问和操作 UCI(加州大学欧文分校)机器学习数据集仓库的简单 API。该项目旨在为机器学习领域的初学者和高级学习者提供一个易于使用的接口,以便他们可以轻松查找数据集描述、搜索特定数据集,甚至按大小或机器学习任务分类下载数据集。
项目快速启动
安装
首先,确保你已经安装了 Python 环境。然后,通过以下命令安装 UCI-ML-API:
pip install git+https://github.com/tirthajyoti/UCI-ML-API.git
基本使用
以下是一个简单的示例,展示如何使用 UCI-ML-API 加载和查看数据集:
from ucimlr import regression_datasets
# 加载 Abalone 数据集
abalone = regression_datasets.Abalone('dataset_folder')
# 打印数据集类型和大小
print(abalone.type_) # 输出: regression
print(len(abalone)) # 输出: 3341
应用案例和最佳实践
数据集搜索与下载
UCI-ML-API 允许用户根据关键词搜索数据集,并下载感兴趣的数据集。以下是一个示例:
from ucimlr import search_datasets
# 搜索包含关键词 'classification' 的数据集
datasets = search_datasets('classification')
# 下载第一个搜索结果
dataset = datasets[0]
dataset.download('download_folder')
数据集分析
用户可以使用 UCI-ML-API 加载数据集后,进行进一步的分析和处理。例如,计算数据集的统计信息:
import pandas as pd
# 加载 Iris 数据集
iris = classification_datasets.Iris('dataset_folder')
# 转换为 Pandas DataFrame
df = pd.DataFrame(iris.data, columns=iris.feature_names)
# 计算统计信息
print(df.describe())
典型生态项目
UCI-ML-API 可以与其他机器学习库和工具结合使用,例如:
- Scikit-learn: 用于构建和评估机器学习模型。
- Pandas: 用于数据处理和分析。
- Matplotlib: 用于数据可视化。
以下是一个结合 Scikit-learn 和 Pandas 的示例:
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
# 加载 Iris 数据集
iris = classification_datasets.Iris('dataset_folder')
# 转换为 Pandas DataFrame
df = pd.DataFrame(iris.data, columns=iris.feature_names)
y = iris.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(df, y, test_size=0.2, random_state=42)
# 训练随机森林分类器
clf = RandomForestClassifier()
clf.fit(X_train, y_train)
# 预测并计算准确率
y_pred = clf.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy}')
通过以上步骤,你可以快速上手 UCI-ML-API,并结合其他机器学习工具进行数据分析和模型构建。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355