Scanpy对VisiumHD空间转录组数据中parquet格式的支持解析
2025-07-04 13:04:38作者:齐添朝
背景介绍
随着空间转录组技术的发展,10X Genomics推出的VisiumHD技术平台能够捕获更高密度的空间数据。这种技术进步带来了数据量的显著增加,传统的CSV文件格式在处理大规模数据时开始显现局限性。
技术挑战
在VisiumHD平台中,由于捕获的barcode数量大幅增加,传统的CSV文件格式面临两个主要问题:
- 行数限制问题:CSV格式在处理超大规模数据时存在性能瓶颈
- 存储效率问题:CSV格式存储空间利用率不高
10X Genomics的解决方案是采用parquet文件格式替代传统的CSV格式来存储组织位置信息(tissue_position_list)。parquet是一种列式存储格式,具有以下优势:
- 更高的压缩率
- 更快的读取速度
- 更好的大数据处理能力
Scanpy的现状与改进
Scanpy作为单细胞和空间转录组数据分析的主流工具,其read_visium函数目前仅支持读取CSV格式的组织位置文件。这导致用户在分析VisiumHD数据时遇到兼容性问题。
现有实现分析
当前Scanpy 1.9.6版本的实现中,read_visium函数硬编码了CSV文件路径,无法自动识别parquet格式文件:
files = dict(
tissue_positions_file=path / 'spatial/tissue_positions_list.csv',
scalefactors_json_file=path / 'spatial/scalefactors_json.json',
hires_image=path / 'spatial/tissue_hires_image.png',
lowres_image=path / 'spatial/tissue_lowres_image.png',
)
改进方案
为了支持VisiumHD数据,Scanpy需要进行以下改进:
- 文件检测机制:自动检测目录中是否存在CSV或parquet格式的组织位置文件
- 多格式支持:根据检测到的文件类型选择相应的读取方法
改进后的代码逻辑如下:
files = dict(
tissue_positions_file = next((path / f'spatial/tissue_positions_list{suffix}'
for suffix in ['.csv', '.parquet']
if (path / f'spatial/tissue_positions_list{suffix}').exists()),
None),
scalefactors_json_file=path / 'spatial/scalefactors_json.json',
hires_image=path / 'spatial/tissue_hires_image.png',
lowres_image=path / 'spatial/tissue_lowres_image.png',
)
if files['tissue_positions_file'].suffix == '.csv':
positions = pd.read_csv(files['tissue_positions_file'], header=None)
elif files['tissue_positions_file'].suffix == '.parquet':
positions = pd.read_parquet(files['tissue_positions_file'])
技术实现细节
文件检测机制
改进方案使用了Python的next函数配合生成器表达式,实现了对多种文件格式的智能检测:
- 首先尝试查找CSV格式文件
- 如果不存在,则尝试查找parquet格式文件
- 如果都不存在,则返回None
多格式读取支持
根据检测到的文件后缀名,选择适当的pandas读取方法:
.csv文件:使用pd.read_csv.parquet文件:使用pd.read_parquet
未来展望
这一改进将使Scanpy能够无缝支持VisiumHD数据,为用户提供更流畅的分析体验。随着空间转录组技术向更高通量发展,工具链的持续优化将变得愈发重要。Scanpy团队已计划在未来的版本中实现这一功能升级。
对于用户而言,这一改进意味着:
- 无需手动转换文件格式
- 分析流程更加自动化
- 能够直接处理最新的VisiumHD数据
随着空间转录组技术的快速发展,类似的文件格式适配工作将成为生物信息学工具维护的常规任务,确保工具链能够跟上实验技术进步的步伐。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
操作系统概念第六版PDF资源全面指南:适用场景与使用教程 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1