tModLoader中物品研究覆盖机制的公开化改进
背景介绍
在tModLoader游戏模组开发中,开发者经常需要创建具有多种状态的物品,例如游戏中的"贝壳电话"或自然指南等物品。这类物品通常具有一个主要形态和多个次级形态,玩家可以通过右键点击在不同形态间切换。然而,当涉及到物品研究系统时,开发者希望所有次级形态的研究进度都能计入主物品的研究进度。
技术挑战
在tModLoader的现有实现中,ContentSamples.AddItemResearchOverride()方法被标记为private,这意味着模组开发者无法直接调用这个方法来设置物品研究覆盖关系。开发者不得不采用以下两种变通方案:
- 使用反射技术绕过访问限制
- 直接修改
ContentSamples.CreativeResearchItemPersistentIdOverride字典
这些方法虽然可行,但都不够优雅,且可能带来维护上的问题。
解决方案
tModLoader团队决定将AddItemResearchOverride()方法的访问修饰符从private改为public,使其成为官方支持的API。这一改动使得模组开发者可以更安全、更方便地实现多状态物品的研究进度共享功能。
实现示例
以下是一个典型的多状态物品实现示例,展示了如何使用这个新公开的方法:
public class MultiStateItem : ModItem
{
public override void SetStaticDefaults()
{
// 设置主物品的研究解锁数量
Item.ResearchUnlockCount = 5;
// 注册次级形态的研究覆盖关系
ContentSamples.AddItemResearchOverride(
Type,
ModContent.ItemType<SecondaryStateA>(),
ModContent.ItemType<SecondaryStateB>()
);
}
// 其他物品属性和方法...
}
注意事项
-
物品类型切换限制:使用
Item.ChangeItemType()方法切换物品类型时,会丢失物品的前缀等附加数据。因此,这种技术最适合用于工具类或非装备类物品。 -
状态切换实现:完整的物品状态切换应该同时处理物品栏右键点击和选中物品时的右键点击两种交互方式。
-
替代方案:对于需要保存更多自定义数据的物品,建议在
ModItem中实现状态逻辑,而不是切换物品类型。
技术展望
这一改进为模组开发者提供了更规范的API来实现复杂物品系统。未来tModLoader可能会进一步优化物品状态切换机制,例如提供保留物品数据的类型切换方法,或者支持动态修改物品显示名称等功能,使多状态物品的实现更加灵活和强大。
通过这次API的公开化,tModLoader继续展现了其对模组开发者友好性的承诺,为创造更丰富的游戏内容提供了坚实的技术基础。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00