ModelContextProtocol TypeScript SDK 中的无状态传输实现方案
2025-06-05 06:47:23作者:宣海椒Queenly
前言
在现代分布式系统中,服务端的高可用性通常通过多节点部署来实现。然而,当涉及到需要保持会话状态的通信协议时,这种架构就会面临挑战。ModelContextProtocol TypeScript SDK 中的 StreamableHTTP 和 SSE 传输实现最初采用了内存缓存会话的方式,这在多节点环境下会导致会话丢失问题。
问题背景
传统实现中,StreamableHTTP 和 SSE 传输通过在服务器内存中缓存传输对象来实现状态保持。这种设计存在两个主要问题:
- 单点故障风险:所有会话状态都存储在单个节点内存中,节点故障会导致会话中断
- 扩展性限制:无法在负载均衡器后部署多个节点,除非使用粘性会话
技术挑战
实现真正的无状态服务需要考虑以下技术难点:
- 连接状态序列化:HTTP 连接对象本身无法被序列化和存储
- 消息重放机制:客户端重连时需要能够获取错过的消息
- 会话恢复:新节点需要能够重建之前的会话状态
解决方案
1. 完全无状态模式
StreamableHTTP 传输支持完全无状态的操作模式,这种模式下:
- 每个请求都会创建新的传输实例
- 不依赖会话ID进行状态保持
- 适合简单请求-响应场景
// 无状态服务器示例
const server = express();
server.post('/mcp', async (req, res) => {
const transport = new StreamableHTTPServerTransport({
sessionIdGenerator: undefined, // 不使用会话ID
enableJsonResponse: true
});
await transport.handleRequest(req, res);
});
2. 基于外部存储的状态管理
对于需要保持状态的场景,可以采用以下架构:
- 状态序列化:将可序列化的会话状态存储在Redis等分布式缓存中
- 事件存储:使用EventStore记录所有事件,支持消息重放
- 状态恢复:通过会话ID从缓存重建传输状态
interface TransportState {
sessionId: string;
started: boolean;
initialized: boolean;
requestMappings: [string, string][];
}
// 状态序列化方法
public serialize(): TransportState {
return {
sessionId: this.sessionId,
started: this._started,
initialized: this._initialized,
requestMappings: Array.from(this._requestToStreamMapping.entries())
};
}
// 状态恢复方法
public static deserialize(state: TransportState, options: TransportOptions) {
const transport = new StreamableHTTPServerTransport(options);
// 恢复状态...
return transport;
}
实现建议
- 选择合适的模式:根据业务需求决定使用无状态还是有状态方案
- 客户端适配:无状态模式下客户端需要处理可能的连接重建
- 消息可靠性:使用EventStore确保消息不丢失
- 性能考量:频繁的状态序列化/反序列化可能影响性能
最佳实践
- 简单场景:优先考虑无状态实现,简化架构
- 复杂场景:结合Redis和EventStore实现可靠的有状态服务
- 客户端设计:实现自动重连和消息重传机制
- 监控:对会话状态和消息流进行详细监控
结论
ModelContextProtocol TypeScript SDK 提供了灵活的传输实现方案,既支持简单的无状态模式,也支持基于外部存储的有状态方案。开发者应根据具体业务场景和可靠性需求选择合适的实现方式。对于大多数生产环境,推荐使用Redis存储会话状态的混合方案,在保证可靠性的同时获得水平扩展能力。
通过合理的架构设计,我们可以在分布式环境中实现可靠的上下文协议通信,同时保持服务的弹性和可扩展性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355