ModelContextProtocol TypeScript SDK 中的无状态传输实现方案
2025-06-05 16:57:22作者:宣海椒Queenly
前言
在现代分布式系统中,服务端的高可用性通常通过多节点部署来实现。然而,当涉及到需要保持会话状态的通信协议时,这种架构就会面临挑战。ModelContextProtocol TypeScript SDK 中的 StreamableHTTP 和 SSE 传输实现最初采用了内存缓存会话的方式,这在多节点环境下会导致会话丢失问题。
问题背景
传统实现中,StreamableHTTP 和 SSE 传输通过在服务器内存中缓存传输对象来实现状态保持。这种设计存在两个主要问题:
- 单点故障风险:所有会话状态都存储在单个节点内存中,节点故障会导致会话中断
- 扩展性限制:无法在负载均衡器后部署多个节点,除非使用粘性会话
技术挑战
实现真正的无状态服务需要考虑以下技术难点:
- 连接状态序列化:HTTP 连接对象本身无法被序列化和存储
- 消息重放机制:客户端重连时需要能够获取错过的消息
- 会话恢复:新节点需要能够重建之前的会话状态
解决方案
1. 完全无状态模式
StreamableHTTP 传输支持完全无状态的操作模式,这种模式下:
- 每个请求都会创建新的传输实例
- 不依赖会话ID进行状态保持
- 适合简单请求-响应场景
// 无状态服务器示例
const server = express();
server.post('/mcp', async (req, res) => {
const transport = new StreamableHTTPServerTransport({
sessionIdGenerator: undefined, // 不使用会话ID
enableJsonResponse: true
});
await transport.handleRequest(req, res);
});
2. 基于外部存储的状态管理
对于需要保持状态的场景,可以采用以下架构:
- 状态序列化:将可序列化的会话状态存储在Redis等分布式缓存中
- 事件存储:使用EventStore记录所有事件,支持消息重放
- 状态恢复:通过会话ID从缓存重建传输状态
interface TransportState {
sessionId: string;
started: boolean;
initialized: boolean;
requestMappings: [string, string][];
}
// 状态序列化方法
public serialize(): TransportState {
return {
sessionId: this.sessionId,
started: this._started,
initialized: this._initialized,
requestMappings: Array.from(this._requestToStreamMapping.entries())
};
}
// 状态恢复方法
public static deserialize(state: TransportState, options: TransportOptions) {
const transport = new StreamableHTTPServerTransport(options);
// 恢复状态...
return transport;
}
实现建议
- 选择合适的模式:根据业务需求决定使用无状态还是有状态方案
- 客户端适配:无状态模式下客户端需要处理可能的连接重建
- 消息可靠性:使用EventStore确保消息不丢失
- 性能考量:频繁的状态序列化/反序列化可能影响性能
最佳实践
- 简单场景:优先考虑无状态实现,简化架构
- 复杂场景:结合Redis和EventStore实现可靠的有状态服务
- 客户端设计:实现自动重连和消息重传机制
- 监控:对会话状态和消息流进行详细监控
结论
ModelContextProtocol TypeScript SDK 提供了灵活的传输实现方案,既支持简单的无状态模式,也支持基于外部存储的有状态方案。开发者应根据具体业务场景和可靠性需求选择合适的实现方式。对于大多数生产环境,推荐使用Redis存储会话状态的混合方案,在保证可靠性的同时获得水平扩展能力。
通过合理的架构设计,我们可以在分布式环境中实现可靠的上下文协议通信,同时保持服务的弹性和可扩展性。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.69 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
632
143