Super-Gradients项目中YOLO NAS训练中断恢复指南
2025-06-11 20:52:25作者:廉彬冶Miranda
背景概述
在深度学习模型训练过程中,训练意外中断是常见问题。当使用Super-Gradients框架训练YOLO NAS模型时,用户可能会遇到训练在中间epoch(如100个epoch中的第25个)意外停止的情况。本文将详细介绍如何正确恢复训练流程。
训练恢复原理
Super-Gradients框架内置了训练状态保存机制,会定期保存以下内容:
- 模型权重参数
- 优化器状态
- 学习率调度器状态
- 当前epoch计数 这些检查点(Checkpoint)默认保存在实验目录中,为训练恢复提供了基础。
具体恢复步骤
1. 检查检查点文件
首先确认实验目录中存在以下文件:
ckpt_best.pth(最佳性能检查点)ckpt_latest.pth(最新检查点)
2. 修改训练配置
在训练脚本中,需要明确设置resume参数为True。典型配置示例如下:
trainer = Trainer("yolo_nas_resume_exp")
model = models.get("yolo_nas_s", num_classes=10)
train_params = {
"resume": True, # 关键恢复参数
"ckpt_root_dir": "path/to/checkpoints", # 检查点目录
# 其他训练参数...
}
3. 恢复训练执行
当resume=True时,框架会自动:
- 加载最新的检查点文件
- 恢复优化器和学习率调度器状态
- 从断点epoch继续训练
注意事项
-
数据集一致性:恢复训练前需确保数据集配置未改变,包括:
- 数据路径
- 数据增强策略
- 批处理大小
-
硬件兼容性:如果在不同硬件设备上恢复训练,需注意:
- GPU型号变化可能导致批处理大小需要调整
- 多GPU训练需要保持GPU数量一致
-
版本控制:建议记录训练时的环境信息:
- Super-Gradients版本号
- CUDA和cuDNN版本
- Python版本
高级技巧
对于大规模训练任务,建议:
- 设置定期检查点保存频率
train_params = {
"save_ckpt_epoch_list": [10,20,30], # 指定epoch保存
"ckpt_best_name": "best_acc", # 自定义最佳模型命名
}
- 使用TensorBoard监控恢复后的训练曲线是否正常衔接
- 对恢复后的模型进行快速验证,确保性能连续性
常见问题排查
若恢复训练失败,可检查:
- 检查点文件是否完整
- 配置文件路径是否正确
- 日志文件中是否有加载错误提示
- 磁盘空间是否充足
通过以上方法,用户可以高效恢复中断的YOLO NAS训练任务,避免从头开始训练的时间浪费。Super-Gradients的这种设计显著提升了大规模深度学习实验的容错性和可用性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217