Revm项目中BLS预编译性能基准测试分析
2025-07-07 06:14:18作者:曹令琨Iris
在Revm项目中,随着arkworks BLS后端的引入,开发团队现在拥有了两套不同的BLS库实现。为了评估这两种实现的性能差异并确定默认选择,项目组进行了详细的基准测试。
性能测试结果
测试涵盖了BLS预编译操作中的多个关键操作,包括群运算、多标量乘法和配对运算等。以下是两种实现的具体性能对比数据:
- G1群加法:arkworks耗时47.6微秒,blst耗时27.7微秒,性能差距达71.8%
- G1群多标量乘法:
- 规模为1时:arkworks 990.7微秒 vs blst 713.3微秒(+38.8%)
- 规模为256时:arkworks 94.8毫秒 vs blst 89.2毫秒(+6.3%)
- G2群加法:arkworks 63.1微秒 vs blst 42.2微秒(+49.5%)
- G2群多标量乘法:
- 规模为1时:arkworks 2.6毫秒 vs blst 1.3毫秒(+100%)
- 规模为256时:arkworks 195.3毫秒 vs blst 162.3毫秒(+20.3%)
- 映射操作:
- FP到G1映射:arkworks 490微秒 vs blst 243.5微秒(+101.4%)
- FP2到G2映射:arkworks 1.4毫秒 vs blst 0.8604毫秒(+62.8%)
- 配对运算:
- 1对配对:arkworks 5.4毫秒 vs blst 4.4毫秒(+22.7%)
- 16对配对:两者均为36.5毫秒(0%差异)
技术分析与决策
从测试结果可以看出,blst实现在绝大多数操作上都展现出更优的性能表现,特别是在基础群运算和小规模多标量乘法方面优势更为明显。随着操作规模的增大,两种实现的性能差距有所缩小,但在大多数情况下blst仍保持领先。
值得注意的是,arkworks的并行处理特性在本轮测试中并未显示出预期的性能提升,这可能表明其底层场元素实现尚未充分优化。特别是在G1加法等基础操作上的较大性能差距,很可能源于arkworks场元素实现的优化不足。
基于这些测试结果,Revm项目组决定保持当前的特性配置方案:将blst实现作为默认选项,而arkworks则作为无默认特性时的备选方案。这一决策既保证了大多数用户场景下的最佳性能,又为有特殊需求的用户提供了替代选择。
结论
性能基准测试为技术选型提供了客观依据。在BLS预编译实现的选择上,blst凭借其全面的性能优势成为Revm项目的默认选项。这一决策将有助于提升区块链虚拟机中BLS相关操作的执行效率,为区块链应用提供更好的性能基础。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++096AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133