Apache Sling Jobs 使用教程
本教程将指导您了解并开始使用基于 Apache Sling 的 Jobs 模块。以下是主要的章节:
1. 项目目录结构及介绍
在 sling-org-apache-sling-jobs 项目中,目录结构通常包括以下部分:
src/main/java: 存放 Java 源代码,实现 Jobs 相关的功能。src/main/resources: 包含各种资源文件,如配置文件、i18n 资源等。src/test: 测试代码所在的目录,用于验证组件功能。pom.xml: Maven 构建文件,定义项目依赖、构建过程和其他元数据。
项目的模块设计是为了支持分布式消息传递的方式处理 Job,通过 OSGi 事件管理和 Message-Oriented Middleware(MoM)来实现。
2. 项目的启动文件介绍
由于 Apache Sling 是一个基于 OSGi 的框架,没有明确的单个启动文件。要启动 Sling 应用程序,你需要一个支持 OSGi 的运行时环境,例如 Felix 或 Equinox,并且需要部署 sling-org-apache-sling-jobs 的 .jar 文件到该环境中。
在生产环境下,这通常通过使用像 Karaf 这样的 OSGi 容器来完成,或者集成到其他支持 OSGi 的服务器,比如 AEM (Adobe Experience Manager)。启动容器后,安装并激活 org.apache.sling.jobs 组件即可。
3. 项目的配置文件介绍
Apache Sling Jobs 配置通常通过 OSGi 服务配置或使用 JSON 文件进行。以下是一些关键的配置元素:
-
Job Consumer Configurations: 你可以通过 OSGi 配置工厂创建多个
JobQueueConsumer实例,它们监听特定类型的 Job 并负责处理它们。配置参数可能包括消费者名称、处理策略和优先级。 -
Job Processing Parameters: Job 自身可以携带参数,这些参数可以通过 JSON 格式定义,并在执行 Job 时传递给消费者。
-
Job Queue Settings: 可以配置 Job 队列的行为,例如队列的最大长度、超时策略以及消息重试次数。
在 Sling 中,通常会利用 /apps 或 /conf 下的节点来存储这些配置,确保它们可以在运行时动态更新。具体配置的详细内容应参照项目的官方文档以获取最新和最全面的信息。
为了启动和配置 Sling Jobs,你需要按照你的环境和需求,参考项目文档和示例来设置这些配置。如果你使用的是 AEM,还可能涉及 CRX 管理界面中的配置编辑。
请注意,由于提供的代码片段是不完整的,具体的目录结构和文件细节应以实际仓库的内容为准。建议直接访问 项目页面 获取完整信息。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00