**Olive: 搭建硬件感知的模型优化桥梁**
在AI领域中,将训练好的模型部署至云或边缘设备往往是一项复杂的工作。不同的硬件性能提升工具供应商拥有各自独特的工具链以最大化其硬件性能,这导致了优化手段的碎片化。Olive, 作为一款由微软开发并开源的模型优化工具,致力于简化这一过程,成为模型压缩、优化和编译领域的佼佼者。
项目介绍
Olive 是一个易于使用的硬件感知模型优化工具,集成了行业领先的技术,在模型压缩、优化以及编译方面表现出色。它可以根据目标硬件自动选择最适合的优化策略,确保所输出的模型能够在云端或边缘高效运行,并考虑到诸如精度和延迟等约束条件。
技术分析
Olive 的设计初衷在于减少工程师为不同硬件平台优化模型所需的努力。它聚合并自动化针对特定硬件目标的优化技术,使得开发者无需掌握各种硬件厂商特有的工具链即可准备和优化已训练的模型。此外,Olive 构建了一个统一且可扩展的优化框架,允许业界轻松地集成最新的优化创新,从而组成和调整集成技术,提供端到端(E2E)的优化解决方案。
应用场景和技术应用
Olive 在多个应用场景下展示出了显著的优势:
-
生成式AI应用架构的微调: 通过Olive 对SLM进行细致入微的调整。
-
稳定扩散模型推理性能提升: 利用ONNX Runtime和Olive 提升SD Turbo和SDXL Turbo的推理速度。
-
VS Code 扩展: Windows AI Studio 使用Olive 进行模型微调,提升AI开发者体验。
-
DirectML优化合作: Intel 和Microsoft 合作利用Olive 优化DirectML以适应Intel® Arc™ Graphics解决方案。
这些案例展示了Olive 如何横跨多种硬件平台实现高效优化,从GPU到NPU,再到自定义芯片,使其成为一个全方位的模型优化工具。
项目特色
硬件感知优化
Olive 可以识别并利用目标硬件的特性,无论是CPU、GPU还是专用性能提升工具,都能智能选择最佳优化路径。
统一的优化框架
Olive 不仅限于单一技术栈,而是构建了一个开放的生态系统,支持广泛的优化方法,如LoRA微调和Llama2优化。
简化的开发者体验
通过聚合多种硬件供应商的优化工具,Olive 大幅降低了学习曲线和工程负担,让开发者专注于创新而无需担心底层细节。
开放源代码社区
微软维护着活跃的GitHub仓库,并提供了详细的文档和支持资源,鼓励全球开发者共同贡献和改进Olive。
总之,无论你是AI研究人员、数据科学家还是软件工程师,Olive 都能帮助你在多变的硬件环境中找到最优解,将你的模型性能推向新高度。立即加入我们,探索更多优化可能!
对Olive 感兴趣?访问我们的官方GitHub页面获取更多信息,或者直接尝试安装最新版本:
pip install olive-ai
来吧,让我们一起打造更加智能化的世界!
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00