探索未来生物学:MAPE-PPI——智能预测蛋白质-蛋白质相互作用的利器
2024-06-05 09:24:21作者:庞眉杨Will
在生物信息学领域,精准地预测蛋白质之间的相互作用对于理解生命体系的基本过程至关重要。MAPE-PPI,一个创新性的开源项目,正是这一领域的最新突破。通过微环境感知的蛋白质嵌入方法,MAPE-PPI提升了蛋白质-蛋白质相互作用(PPI)预测的有效性和效率。这个项目由Lirong Wu等人在ICLR 2024年会议上提出,并已得到了广泛关注。
项目介绍
MAPE-PPI是一个基于PyTorch构建的深度学习框架,旨在利用机器学习模型来精确预测蛋白质之间的相互作用。项目的核心是微环境感知的蛋白质嵌入技术,它能够捕捉到蛋白质结构和功能的复杂性,从而增强PPI预测的准确性。数据处理和模型训练的流程清晰简洁,使得即使是对深度学习不熟悉的生物学家也能轻松上手。
项目技术分析
该项目依赖于AlphaFold2预测的蛋白质结构,结合邻域图卷积网络和变分自编码器,构建了微环境敏感的蛋白质表示。通过对大规模数据集的预训练,模型能学习到丰富的蛋白质特征。此外,项目提供了便捷的数据处理工具,可将原始数据转化为特征矩阵和邻接矩阵,为模型训练做好准备。
应用场景
MAPE-PPI技术可以广泛应用于多个领域,包括药物研发、疾病机制研究以及系统生物学建模。例如,在药物发现过程中,准确预测蛋白质间的互动可以帮助研究人员识别潜在的药物靶点;在疾病研究中,理解关键蛋白质互作网络有助于揭示疾病的分子基础。
项目特点
- 高效预训练:项目提供了一套完整的预训练和推理流程,可以在不同规模的PPI网络上运行。
- 微环境感知:独特的蛋白质嵌入方法考虑到了蛋白质局部环境的影响,增强了预测准确性。
- 易于使用:项目依赖项明确,提供预处理数据,用户可以直接进行模型训练和验证。
- 开放源代码:项目完全开源,鼓励社区参与和协作改进,推动科研进步。
如果你对生物信息学或蛋白质交互网络有浓厚兴趣,MAPE-PPI无疑是你探索未知世界的得力助手。立即下载并开始你的科学之旅,用AI的力量洞察生命的奥秘吧!
引用该项目,请参考以下文献:
@article{wu2024mape,
title={MAPE-PPI: Towards Effective and Efficient Protein-Protein Interaction Prediction via Microenvironment-Aware Protein Embedding},
author={Wu, Lirong and Tian, Yijun and Huang, Yufei and Li, Siyuan and Lin, Haitao and Chawla, Nitesh V and Li, Stan Z},
journal={arXiv preprint arXiv:2402.14391},
year={2024}
}
@inproceedings{
wy2024mapeppi,
title={MAPE-PPI: Towards Effective and Efficient Protein-Protein Interaction Prediction via Microenvironment-Aware Protein Embedding},
author={Wu, Lirong and Tian, Yijun and Huang, Yufei and Li, Siyuan and Lin, Haitao and Chawla, Nitesh V and Li, Stan Z},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=itGkF993gz}
}
如有任何问题,请联系作者Lirong Wu: wulirong@westlake.edu.cn。我们期待您的贡献和反馈,共同推动生物学研究的进步!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
329
388
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
188
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
136