探索未来生物学:MAPE-PPI——智能预测蛋白质-蛋白质相互作用的利器
2024-06-05 09:24:21作者:庞眉杨Will
在生物信息学领域,精准地预测蛋白质之间的相互作用对于理解生命体系的基本过程至关重要。MAPE-PPI,一个创新性的开源项目,正是这一领域的最新突破。通过微环境感知的蛋白质嵌入方法,MAPE-PPI提升了蛋白质-蛋白质相互作用(PPI)预测的有效性和效率。这个项目由Lirong Wu等人在ICLR 2024年会议上提出,并已得到了广泛关注。
项目介绍
MAPE-PPI是一个基于PyTorch构建的深度学习框架,旨在利用机器学习模型来精确预测蛋白质之间的相互作用。项目的核心是微环境感知的蛋白质嵌入技术,它能够捕捉到蛋白质结构和功能的复杂性,从而增强PPI预测的准确性。数据处理和模型训练的流程清晰简洁,使得即使是对深度学习不熟悉的生物学家也能轻松上手。
项目技术分析
该项目依赖于AlphaFold2预测的蛋白质结构,结合邻域图卷积网络和变分自编码器,构建了微环境敏感的蛋白质表示。通过对大规模数据集的预训练,模型能学习到丰富的蛋白质特征。此外,项目提供了便捷的数据处理工具,可将原始数据转化为特征矩阵和邻接矩阵,为模型训练做好准备。
应用场景
MAPE-PPI技术可以广泛应用于多个领域,包括药物研发、疾病机制研究以及系统生物学建模。例如,在药物发现过程中,准确预测蛋白质间的互动可以帮助研究人员识别潜在的药物靶点;在疾病研究中,理解关键蛋白质互作网络有助于揭示疾病的分子基础。
项目特点
- 高效预训练:项目提供了一套完整的预训练和推理流程,可以在不同规模的PPI网络上运行。
- 微环境感知:独特的蛋白质嵌入方法考虑到了蛋白质局部环境的影响,增强了预测准确性。
- 易于使用:项目依赖项明确,提供预处理数据,用户可以直接进行模型训练和验证。
- 开放源代码:项目完全开源,鼓励社区参与和协作改进,推动科研进步。
如果你对生物信息学或蛋白质交互网络有浓厚兴趣,MAPE-PPI无疑是你探索未知世界的得力助手。立即下载并开始你的科学之旅,用AI的力量洞察生命的奥秘吧!
引用该项目,请参考以下文献:
@article{wu2024mape,
title={MAPE-PPI: Towards Effective and Efficient Protein-Protein Interaction Prediction via Microenvironment-Aware Protein Embedding},
author={Wu, Lirong and Tian, Yijun and Huang, Yufei and Li, Siyuan and Lin, Haitao and Chawla, Nitesh V and Li, Stan Z},
journal={arXiv preprint arXiv:2402.14391},
year={2024}
}
@inproceedings{
wy2024mapeppi,
title={MAPE-PPI: Towards Effective and Efficient Protein-Protein Interaction Prediction via Microenvironment-Aware Protein Embedding},
author={Wu, Lirong and Tian, Yijun and Huang, Yufei and Li, Siyuan and Lin, Haitao and Chawla, Nitesh V and Li, Stan Z},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=itGkF993gz}
}
如有任何问题,请联系作者Lirong Wu: wulirong@westlake.edu.cn。我们期待您的贡献和反馈,共同推动生物学研究的进步!
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
Ascend Extension for PyTorch
Python
199
219
暂无简介
Dart
637
145
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
278
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
246
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
629
仓颉编译器源码及 cjdb 调试工具。
C++
128
860
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
75
99
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.74 K