探索未来生物学:MAPE-PPI——智能预测蛋白质-蛋白质相互作用的利器
2024-06-05 09:24:21作者:庞眉杨Will
在生物信息学领域,精准地预测蛋白质之间的相互作用对于理解生命体系的基本过程至关重要。MAPE-PPI,一个创新性的开源项目,正是这一领域的最新突破。通过微环境感知的蛋白质嵌入方法,MAPE-PPI提升了蛋白质-蛋白质相互作用(PPI)预测的有效性和效率。这个项目由Lirong Wu等人在ICLR 2024年会议上提出,并已得到了广泛关注。
项目介绍
MAPE-PPI是一个基于PyTorch构建的深度学习框架,旨在利用机器学习模型来精确预测蛋白质之间的相互作用。项目的核心是微环境感知的蛋白质嵌入技术,它能够捕捉到蛋白质结构和功能的复杂性,从而增强PPI预测的准确性。数据处理和模型训练的流程清晰简洁,使得即使是对深度学习不熟悉的生物学家也能轻松上手。
项目技术分析
该项目依赖于AlphaFold2预测的蛋白质结构,结合邻域图卷积网络和变分自编码器,构建了微环境敏感的蛋白质表示。通过对大规模数据集的预训练,模型能学习到丰富的蛋白质特征。此外,项目提供了便捷的数据处理工具,可将原始数据转化为特征矩阵和邻接矩阵,为模型训练做好准备。
应用场景
MAPE-PPI技术可以广泛应用于多个领域,包括药物研发、疾病机制研究以及系统生物学建模。例如,在药物发现过程中,准确预测蛋白质间的互动可以帮助研究人员识别潜在的药物靶点;在疾病研究中,理解关键蛋白质互作网络有助于揭示疾病的分子基础。
项目特点
- 高效预训练:项目提供了一套完整的预训练和推理流程,可以在不同规模的PPI网络上运行。
- 微环境感知:独特的蛋白质嵌入方法考虑到了蛋白质局部环境的影响,增强了预测准确性。
- 易于使用:项目依赖项明确,提供预处理数据,用户可以直接进行模型训练和验证。
- 开放源代码:项目完全开源,鼓励社区参与和协作改进,推动科研进步。
如果你对生物信息学或蛋白质交互网络有浓厚兴趣,MAPE-PPI无疑是你探索未知世界的得力助手。立即下载并开始你的科学之旅,用AI的力量洞察生命的奥秘吧!
引用该项目,请参考以下文献:
@article{wu2024mape,
title={MAPE-PPI: Towards Effective and Efficient Protein-Protein Interaction Prediction via Microenvironment-Aware Protein Embedding},
author={Wu, Lirong and Tian, Yijun and Huang, Yufei and Li, Siyuan and Lin, Haitao and Chawla, Nitesh V and Li, Stan Z},
journal={arXiv preprint arXiv:2402.14391},
year={2024}
}
@inproceedings{
wy2024mapeppi,
title={MAPE-PPI: Towards Effective and Efficient Protein-Protein Interaction Prediction via Microenvironment-Aware Protein Embedding},
author={Wu, Lirong and Tian, Yijun and Huang, Yufei and Li, Siyuan and Lin, Haitao and Chawla, Nitesh V and Li, Stan Z},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=itGkF993gz}
}
如有任何问题,请联系作者Lirong Wu: wulirong@westlake.edu.cn。我们期待您的贡献和反馈,共同推动生物学研究的进步!
登录后查看全文
热门项目推荐
Hunyuan3D-Part
腾讯混元3D-Part00Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0274community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息011Hunyuan3D-2
Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
153
1.98 K

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
505
42

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
194
279

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
992
395

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
938
554

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
333
11

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
70