探索未来生物学:MAPE-PPI——智能预测蛋白质-蛋白质相互作用的利器
2024-06-05 09:24:21作者:庞眉杨Will
在生物信息学领域,精准地预测蛋白质之间的相互作用对于理解生命体系的基本过程至关重要。MAPE-PPI,一个创新性的开源项目,正是这一领域的最新突破。通过微环境感知的蛋白质嵌入方法,MAPE-PPI提升了蛋白质-蛋白质相互作用(PPI)预测的有效性和效率。这个项目由Lirong Wu等人在ICLR 2024年会议上提出,并已得到了广泛关注。
项目介绍
MAPE-PPI是一个基于PyTorch构建的深度学习框架,旨在利用机器学习模型来精确预测蛋白质之间的相互作用。项目的核心是微环境感知的蛋白质嵌入技术,它能够捕捉到蛋白质结构和功能的复杂性,从而增强PPI预测的准确性。数据处理和模型训练的流程清晰简洁,使得即使是对深度学习不熟悉的生物学家也能轻松上手。
项目技术分析
该项目依赖于AlphaFold2预测的蛋白质结构,结合邻域图卷积网络和变分自编码器,构建了微环境敏感的蛋白质表示。通过对大规模数据集的预训练,模型能学习到丰富的蛋白质特征。此外,项目提供了便捷的数据处理工具,可将原始数据转化为特征矩阵和邻接矩阵,为模型训练做好准备。
应用场景
MAPE-PPI技术可以广泛应用于多个领域,包括药物研发、疾病机制研究以及系统生物学建模。例如,在药物发现过程中,准确预测蛋白质间的互动可以帮助研究人员识别潜在的药物靶点;在疾病研究中,理解关键蛋白质互作网络有助于揭示疾病的分子基础。
项目特点
- 高效预训练:项目提供了一套完整的预训练和推理流程,可以在不同规模的PPI网络上运行。
- 微环境感知:独特的蛋白质嵌入方法考虑到了蛋白质局部环境的影响,增强了预测准确性。
- 易于使用:项目依赖项明确,提供预处理数据,用户可以直接进行模型训练和验证。
- 开放源代码:项目完全开源,鼓励社区参与和协作改进,推动科研进步。
如果你对生物信息学或蛋白质交互网络有浓厚兴趣,MAPE-PPI无疑是你探索未知世界的得力助手。立即下载并开始你的科学之旅,用AI的力量洞察生命的奥秘吧!
引用该项目,请参考以下文献:
@article{wu2024mape,
title={MAPE-PPI: Towards Effective and Efficient Protein-Protein Interaction Prediction via Microenvironment-Aware Protein Embedding},
author={Wu, Lirong and Tian, Yijun and Huang, Yufei and Li, Siyuan and Lin, Haitao and Chawla, Nitesh V and Li, Stan Z},
journal={arXiv preprint arXiv:2402.14391},
year={2024}
}
@inproceedings{
wy2024mapeppi,
title={MAPE-PPI: Towards Effective and Efficient Protein-Protein Interaction Prediction via Microenvironment-Aware Protein Embedding},
author={Wu, Lirong and Tian, Yijun and Huang, Yufei and Li, Siyuan and Lin, Haitao and Chawla, Nitesh V and Li, Stan Z},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=itGkF993gz}
}
如有任何问题,请联系作者Lirong Wu: wulirong@westlake.edu.cn。我们期待您的贡献和反馈,共同推动生物学研究的进步!
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
861
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K