hugo-best-practices 的安装和配置教程
1. 项目基础介绍和主要编程语言
hugo-best-practices 是一个开源项目,旨在提供一个使用 Hugo 框架的最佳实践示例。Hugo 是一个用 Go 语言编写的静态网站生成器,它具有速度快、易用和可扩展性强等特点。本项目为初学者提供了一个学习如何使用 Hugo 构建网站的良好起点,包含了众多实用的功能和最佳实践。
本项目主要使用的编程语言是 Go 语言,同时使用 Markdown 编写页面内容。
2. 项目使用的关键技术和框架
本项目使用的关键技术包括:
- Hugo:用于生成静态网站的框架。
- Markdown:用于编写网站内容的轻量级标记语言。
- SCSS:用于扩展 CSS 的预处理器,使得样式编写更加灵活。
- JavaScript:用于增加网页的交互性。
此外,项目可能还使用了其他一些前端框架和工具,如 Bootstrap 或其他 CSS 框架来美化网站界面。
3. 项目安装和配置的准备工作及详细步骤
准备工作
在开始安装和配置 hugo-best-practices 之前,您需要确保您的系统中已经安装了以下软件:
- Git:用于从 GitHub 克隆项目代码。
- Go:因为 Hugo 是用 Go 语言编写的,所以需要安装 Go 环境。
- Hugo:静态网站生成器,可以从 Hugo 的官方网站下载安装。
安装步骤
-
克隆项目仓库
打开您的命令行工具,执行以下命令来克隆项目仓库:
git clone https://github.com/spech66/hugo-best-practices.git克隆完成后,您会得到一个名为
hugo-best-practices的文件夹。 -
安装 Hugo
如果您的系统中还没有安装 Hugo,请访问 Hugo 官方网站下载适合您操作系统的版本并按照说明进行安装。
-
安装项目依赖
进入项目目录,执行以下命令安装项目可能需要的依赖项:
hugo mod tidy -
启动 Hugo 服务器
在项目目录中,运行以下命令以启动 Hugo 的开发服务器:
hugo server当您在浏览器中访问
http://localhost:1313/时,应该可以看到您的网站。 -
构建网站
当您完成网站开发和内容编写后,可以运行以下命令来构建静态网站:
hugo构建完成后,将会在项目目录下的
public文件夹中生成静态网站文件。 -
部署网站
您可以将
public文件夹中的内容部署到服务器或者任何静态网站托管平台上,如 GitHub Pages、Netlify 或 Vercel 等。
按照以上步骤,您应该能够成功安装和配置 hugo-best-practices 项目,并开始构建自己的静态网站。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00