Torch-Pruning 项目教程
2026-01-16 10:32:41作者:幸俭卉
项目介绍
Torch-Pruning(TP)是一个专门为结构化剪枝设计的库。与现有的框架(如 torch.nn.utils.prune)不同,TP 会物理地移除参数,并自动裁剪其他依赖层。TP 是一个纯 PyTorch 项目,支持 PyTorch 1.x 和 2.0 版本。它实现了内置的计算图追踪、依赖图(DependencyGraph)、剪枝器等功能,适用于各种结构化剪枝任务。
项目快速启动
安装
首先,通过以下命令安装 Torch-Pruning:
pip install torch-pruning
快速启动示例
以下是一个简单的示例,展示如何使用 Torch-Pruning 对 ResNet18 进行剪枝:
import torch
from torchvision.models import resnet18
import torch_pruning as tp
# 加载预训练的 ResNet18 模型
model = resnet18(pretrained=True)
# 创建一个示例输入
example_inputs = torch.randn(1, 3, 224, 224)
# 定义重要性标准
imp = tp.importance.GroupNormImportance(p=2)
# 初始化剪枝器
ignored_layers = []
for m in model.modules():
if isinstance(m, torch.nn.Linear) and m.out_features == 1000:
ignored_layers.append(m) # 不要剪枝最终的分类器
pruner = tp.pruner.MetaPruner(
model=model,
example_inputs=example_inputs,
importance=imp,
pruning_ratio=0.5 # 移除50%的通道
)
# 执行剪枝
pruner.step()
# 保存剪枝后的模型
torch.save(model, 'pruned_resnet18.pth')
应用案例和最佳实践
结构化剪枝
结构化剪枝是一种移除模型中一组参数的技术,这些参数分布在不同的层中。由于层之间的依赖关系,这些参数必须同时移除以保持模型的结构完整性。Torch-Pruning 通过实现 DependencyGraph 来自动识别这些依赖关系,并收集剪枝组。
实际案例
以下是一个实际案例,展示如何对一个卷积层进行结构化剪枝:
import torch
from torchvision.models import resnet18
import torch_pruning as tp
# 加载预训练的 ResNet18 模型
model = resnet18(pretrained=True)
# 创建一个示例输入
example_inputs = torch.randn(1, 3, 224, 224)
# 构建依赖图
DG = tp.DependencyGraph()
DG.build_dependency(model, example_inputs=example_inputs)
# 获取剪枝组
group = DG.get_pruning_group(model.conv1, tp.prune_conv_out_channels, idxs=[2, 6, 9])
# 执行剪枝
if DG.check_pruning_group(group):
group.prune()
# 保存剪枝后的模型
torch.save(model, 'pruned_resnet18_conv1.pth')
典型生态项目
DepGraph
DepGraph 是一个用于通用结构化剪枝的算法,它建模了结构化剪枝中的层依赖关系,实现了任意结构的剪枝。Torch-Pruning 是 DepGraph 的实现库。
相关论文
- 论文:DepGraph: Towards Any Structural Pruning
- 工程:https://github.com/VainF/Torch-Pruning
社区支持
Torch-Pruning 有一个活跃的社区,可以通过 GitHub Issues、Discord 或 WeChat 群组进行交流和获取帮助。
- Discord: 链接
- WeChat 群组: Group-2, Group-1 (500/500 FULL)
通过这些资源,用户可以获取最新的更新、教程和最佳实践。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
478
3.57 K
React Native鸿蒙化仓库
JavaScript
288
340
暂无简介
Dart
729
175
Ascend Extension for PyTorch
Python
288
321
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
448
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
242
105
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
453
181
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
705