Longhorn项目中的CSI卷迁移阻塞问题分析与解决
问题背景
在Longhorn分布式存储系统的使用过程中,我们发现了一个影响生产环境稳定性的关键问题:当系统正在进行长时间备份操作时,工作负载Pod无法正常迁移到新节点。这个问题主要出现在Longhorn v1.7.0及以上版本中,会导致Kubernetes集群中的工作负载无法按预期进行节点迁移。
问题现象
具体表现为:当一个工作负载Pod需要迁移到新节点时(例如由于节点维护或自动扩缩容),如果此时Longhorn正在执行长时间运行的备份操作(可能持续数小时),系统会阻止CSI卷从原节点解绑。这是因为Longhorn的ControllerUnpublishVolume函数会等待备份操作完成,在此期间持续返回错误,导致Kubernetes无法移除原节点上的CSI卷附加(Volume Attachment)对象。
最严重的情况下,如果备份操作因某种原因永远无法完成(如相关快照CR丢失或存在大量错误备份),Longhorn卷将永久不可用,相关的工作负载Pod也将无法启动。
技术分析
这个问题源于Longhorn v1.7.0引入的一个变更,该变更使得ControllerUnpublishVolume操作会等待所有正在进行的卷操作(如备份)完成。从设计角度看,这原本是为了保证数据一致性,但在实际生产环境中却带来了可用性问题。
在Kubernetes的卷管理流程中,当Pod需要迁移时,系统会先尝试在原节点上解绑卷(ControllerUnpublishVolume),然后在新节点上重新绑定。如果解绑操作被长时间阻塞,整个迁移流程就会停滞。
解决方案
经过深入分析,Longhorn团队决定修改这一行为,使系统能够更智能地处理这种情况:
- 允许Kubernetes正常完成CSI卷的解绑操作,即使有长时间运行的操作正在进行
- 当卷需要附加到新节点时,系统会中断正在进行的长时间操作(如备份)
- 确保工作负载Pod能够优先获得卷的使用权,保障业务连续性
这种设计变更更好地平衡了数据一致性和系统可用性,符合生产环境对高可用的需求。
测试验证
为确保修复效果,测试团队设计了两种主要测试场景:
-
常规迁移测试:模拟工作负载Pod在不同节点间的正常迁移过程,验证在各种操作并发情况下迁移是否能够顺利完成
-
长时间备份测试:特别针对备份操作场景,验证当备份耗时较长时,系统是否能够正确中断备份并允许卷迁移
测试结果表明,修复后的版本能够正确处理这些场景,工作负载Pod可以按预期迁移到新节点,而不会因为后台操作被长时间阻塞。
总结
这个问题的解决体现了分布式存储系统设计中需要考虑的重要权衡:在保证数据一致性的同时,必须确保系统的高可用性。Longhorn团队通过这次修复,使系统在面对长时间运行操作时能够更灵活地响应上层编排系统的需求,这对于生产环境中的关键业务负载尤为重要。
对于使用Longhorn的用户,建议关注这一修复,特别是在需要频繁迁移工作负载或执行长时间备份操作的场景中。该修复已包含在后续版本中,用户可以通过升级获得更好的使用体验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C036
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00