PyTorch AO项目中量化模型性能优化实践
在PyTorch AO项目中使用int4权重仅量化技术时,我们发现了一个关键的性能问题:Torchao的CPU开销过高,抵消了量化内核带来的性能优势。本文将深入分析这一问题及其解决方案。
问题背景
量化技术本应通过降低计算精度来提升模型推理速度。在理想情况下,int4 GEMM内核相比bf16/fp16 GEMM通常能有2-3倍的加速。然而在实际应用中,特别是在小型模型或高性能GPU/XPU设备上,我们观察到端到端性能不仅没有提升,反而出现了下降。
性能瓶颈分析
通过详细剖析,我们发现了两个主要的性能瓶颈:
-
eager模式下的重分发开销:Torchao使用Tensor子类和
__torch_function__机制将nn.linear重定向到自定义的int4矩阵乘法操作。在eager模式下,这种重分发操作的时间甚至超过了实际计算内核的执行时间。 -
编译模式下的张量展开开销:在torch.compile模式下,虽然重分发操作被优化掉了,但引入了额外的host端工作。Torchao中的affine_quantized_tensor.py会被dynamo/inductor展开,这个展开过程的时间几乎与int4矩阵乘法内核的执行时间相当。
性能影响评估
在A100-PCIE-40GB和AMD EPYC 7713平台上进行的测试显示:
- 在示例代码中,bf16的端到端延迟为0.109ms,而int4woq为0.162ms
- dynamo准备时间在bf16下为0.024ms,在int4woq下增加到0.098ms
- 额外的0.075ms CPU开销占端到端延迟的46%
在Qwen2-0.5B模型上的测试结果更令人担忧:
- bf16的下一个token延迟为17.11ms
- int4woq的下一个token延迟增加到29.16ms
- 其中9ms来自填充操作开销,2ms来自张量展开
解决方案
经过社区讨论和开发,我们找到了以下解决方案:
-
参数化改造:使用
unwrap_tensor_subclass_parameters函数可以消除编译时的额外运行时开销。这个解决方案要求Tensor子类参数的构造函数__init__和__new__能够被dynamo追踪。 -
代码优化:通过重构Torchao中的Tensor子类实现,确保其构造函数完全兼容dynamo追踪要求。特别是移除了构造函数中的Callable参数,这使得参数化改造成为可能。
优化效果
在实际测试中,这些优化措施取得了显著效果:
- Llama3.1-8b模型的dynamo/inductor准备时间从4.5ms降低到2.5ms
- 完全消除了
flatten_subclass相关的操作 - 虽然相比纯bf16的0.6ms准备时间仍有差距,但已经大幅改善了性能
结论
通过这次优化实践,我们不仅解决了Torchao在量化模型中的性能问题,也为PyTorch生态中的量化技术应用积累了宝贵经验。未来,我们将继续探索更高效的量化实现方式,确保理论上的性能优势能够真正转化为实际应用中的加速效果。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00