Spring AI项目中SimpleLoggerAdvisor重复订阅导致聊天中断问题分析
问题现象
在Spring AI项目中,开发者使用SimpleLoggerAdvisor进行日志记录时发现了一个异常现象:每次聊天会话中,向模型发送的请求消息数量会随着聊天次数的增加而递增。具体表现为第一次聊天发送1条消息,第二次发送2条,第三次发送3条,最终导致模型因超出限制而中断。
问题根源分析
通过对代码的审查,我们发现问题的核心在于SimpleLoggerAdvisor的实现方式。该advisor同时实现了StreamAroundAdvisor和CallAroundAdvisor两个接口,但在处理流式响应时存在订阅管理不当的问题。
关键问题点在于aroundStream方法中的响应处理逻辑。当使用MessageAggregator聚合响应时,如果没有正确处理订阅关系,可能会导致多次订阅同一个响应流,从而产生消息重复处理的现象。
技术细节
-
Advisor链机制:Spring AI中的advisor链允许在请求处理前后插入自定义逻辑。SimpleLoggerAdvisor同时实现了流式和非流式两种处理接口。
-
响应订阅问题:在流式处理中,每次订阅Flux都会触发新的请求处理流程。如果聚合器或日志记录逻辑没有妥善管理订阅,就会导致重复处理。
-
资源消耗:随着聊天次数的增加,重复订阅会导致请求消息数量呈线性增长,最终超出模型的处理能力限制。
解决方案
要解决这个问题,我们需要重构SimpleLoggerAdvisor的实现,确保:
-
单一订阅原则:确保每个响应流只被订阅一次,避免重复处理。
-
响应共享:对于需要多次使用的响应流,使用
share()或cache()操作符来共享订阅。 -
清晰的日志记录边界:明确区分请求日志和响应日志的记录时机,避免交叉影响。
优化后的实现建议
@Override
public Flux<AdvisedResponse> aroundStream(AdvisedRequest advisedRequest, StreamAroundAdvisorChain chain) {
// 记录请求日志
advisedRequest.messages().forEach(message -> {
logger.info("request: {}", message);
});
// 获取响应流并共享订阅
Flux<AdvisedResponse> sharedResponses = chain.nextAroundStream(advisedRequest).share();
// 附加响应处理逻辑
return sharedResponses
.doOnNext(response -> {
if (response.isLast()) {
logger.info("token使用量,response: {}",
response.response().getMetadata().getUsage());
}
});
}
最佳实践
-
避免多重继承:除非必要,advisor最好只实现一种处理接口(流式或非流式)。
-
谨慎使用聚合器:MessageAggregator等工具需要特别注意订阅管理。
-
性能监控:实现日志记录功能时,应同时监控其对系统性能的影响。
-
资源清理:确保所有响应流都有适当的终止处理,避免资源泄漏。
总结
Spring AI项目中的advisor机制提供了强大的扩展能力,但也需要开发者理解响应式编程的基本原则。通过正确处理流式响应的订阅关系,可以避免类似SimpleLoggerAdvisor导致的重复消息问题。在实现自定义advisor时,应当特别注意响应式流的生命周期管理,确保系统的稳定性和可靠性。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00