Spring AI项目中SimpleLoggerAdvisor重复订阅导致聊天中断问题分析
问题现象
在Spring AI项目中,开发者使用SimpleLoggerAdvisor进行日志记录时发现了一个异常现象:每次聊天会话中,向模型发送的请求消息数量会随着聊天次数的增加而递增。具体表现为第一次聊天发送1条消息,第二次发送2条,第三次发送3条,最终导致模型因超出限制而中断。
问题根源分析
通过对代码的审查,我们发现问题的核心在于SimpleLoggerAdvisor的实现方式。该advisor同时实现了StreamAroundAdvisor和CallAroundAdvisor两个接口,但在处理流式响应时存在订阅管理不当的问题。
关键问题点在于aroundStream方法中的响应处理逻辑。当使用MessageAggregator聚合响应时,如果没有正确处理订阅关系,可能会导致多次订阅同一个响应流,从而产生消息重复处理的现象。
技术细节
-
Advisor链机制:Spring AI中的advisor链允许在请求处理前后插入自定义逻辑。SimpleLoggerAdvisor同时实现了流式和非流式两种处理接口。
-
响应订阅问题:在流式处理中,每次订阅Flux都会触发新的请求处理流程。如果聚合器或日志记录逻辑没有妥善管理订阅,就会导致重复处理。
-
资源消耗:随着聊天次数的增加,重复订阅会导致请求消息数量呈线性增长,最终超出模型的处理能力限制。
解决方案
要解决这个问题,我们需要重构SimpleLoggerAdvisor的实现,确保:
-
单一订阅原则:确保每个响应流只被订阅一次,避免重复处理。
-
响应共享:对于需要多次使用的响应流,使用
share()或cache()操作符来共享订阅。 -
清晰的日志记录边界:明确区分请求日志和响应日志的记录时机,避免交叉影响。
优化后的实现建议
@Override
public Flux<AdvisedResponse> aroundStream(AdvisedRequest advisedRequest, StreamAroundAdvisorChain chain) {
// 记录请求日志
advisedRequest.messages().forEach(message -> {
logger.info("request: {}", message);
});
// 获取响应流并共享订阅
Flux<AdvisedResponse> sharedResponses = chain.nextAroundStream(advisedRequest).share();
// 附加响应处理逻辑
return sharedResponses
.doOnNext(response -> {
if (response.isLast()) {
logger.info("token使用量,response: {}",
response.response().getMetadata().getUsage());
}
});
}
最佳实践
-
避免多重继承:除非必要,advisor最好只实现一种处理接口(流式或非流式)。
-
谨慎使用聚合器:MessageAggregator等工具需要特别注意订阅管理。
-
性能监控:实现日志记录功能时,应同时监控其对系统性能的影响。
-
资源清理:确保所有响应流都有适当的终止处理,避免资源泄漏。
总结
Spring AI项目中的advisor机制提供了强大的扩展能力,但也需要开发者理解响应式编程的基本原则。通过正确处理流式响应的订阅关系,可以避免类似SimpleLoggerAdvisor导致的重复消息问题。在实现自定义advisor时,应当特别注意响应式流的生命周期管理,确保系统的稳定性和可靠性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00