深入解析complex-RAG-guide项目中的RAG实现流程
2025-07-09 08:51:47作者:谭伦延
项目概述
complex-RAG-guide项目展示了一个完整的检索增强生成(RAG)系统实现,使用《魔法世界与奇幻冒险》作为示例文本。该项目涵盖了从数据预处理、文本编码到检索和评估的完整流程,是学习现代RAG系统实现的优秀案例。
核心组件与技术栈
主要技术依赖
该项目基于以下关键技术构建:
- LangChain框架:用于构建RAG流程的核心框架
- OpenAI/Groq API:提供大语言模型能力
- FAISS向量数据库:用于高效相似性搜索
- RAGAS评估框架:用于评估RAG系统质量
关键Python库
from langchain_openai import ChatOpenAI
from langchain_groq import ChatGroq
from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings
from ragas import evaluate
数据预处理流程
1. 文档加载与章节分割
项目首先将PDF文档分割为独立章节:
# 加载PDF文档
loader = PyPDFLoader(hp_pdf_path)
document = loader.load()
# 分割为章节
chapters = split_into_chapters(hp_pdf_path)
print(len(chapters)) # 输出章节数量
2. 文本清洗
使用辅助函数进行文本标准化处理:
# 替换制表符为空格
chapters = replace_t_with_space(chapters)
# 处理多余换行符
summary_text = replace_double_lines_with_one_line(summary_result["output_text"])
3. 引用提取
项目实现了专门的引用提取功能:
# 从文档中提取引用
book_quotes_list = extract_book_quotes_as_documents(document_cleaned)
文本摘要生成
摘要提示模板
定义了专业的摘要生成提示词:
summarization_prompt_template = """Write an extensive summary of the following:
{text}
SUMMARY:"""
动态摘要策略
根据文本长度自动选择摘要策略:
if num_tokens < gpt_35_turbo_max_tokens:
# 短文本使用"stuff"策略
chain = load_summarize_chain(llm, chain_type="stuff")
else:
# 长文本使用"map_reduce"策略
chain = load_summarize_chain(llm, chain_type="map_reduce")
向量编码与检索
1. 向量编码实现
项目实现了三种编码方式:
# 全书编码
chunks_vector_store = encode_book(hp_pdf_path)
# 章节摘要编码
chapter_summaries_vector_store = encode_chapter_summaries(chapter_summaries)
# 引用编码
book_quotes_vectorstore = encode_quotes(book_quotes_list)
2. 检索器配置
针对不同粒度配置检索器:
# 文本块检索器(返回1个最相关结果)
chunks_query_retriever = chunks_vector_store.as_retriever(search_kwargs={"k": 1})
# 章节摘要检索器
chapter_summaries_query_retriever = chapter_summaries_vector_store.as_retriever(search_kwargs={"k": 1})
系统评估
项目使用RAGAS框架进行多维度评估:
from ragas.metrics import (
answer_correctness,
faithfulness,
answer_relevancy,
context_recall,
answer_similarity
)
最佳实践与技巧
- 分块策略:使用重叠分块(200token重叠)确保上下文连贯性
- 模型选择:根据文本长度自动选择最优处理策略
- 性能优化:缓存向量存储避免重复计算
- 评估全面性:使用5种指标全面评估系统表现
总结
complex-RAG-guide项目提供了一个工业级RAG系统的完整实现范例,特别值得学习的是:
- 多粒度文本处理(全书、章节、引用)
- 动态处理策略选择
- 全面的评估体系
- 工程化的实现细节
这个项目是理解现代RAG系统工作原理和实践的绝佳材料,开发者可以基于此框架快速构建自己的知识问答系统。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443