深入解析complex-RAG-guide项目中的RAG实现流程
2025-07-09 12:29:17作者:谭伦延
项目概述
complex-RAG-guide项目展示了一个完整的检索增强生成(RAG)系统实现,使用《魔法世界与奇幻冒险》作为示例文本。该项目涵盖了从数据预处理、文本编码到检索和评估的完整流程,是学习现代RAG系统实现的优秀案例。
核心组件与技术栈
主要技术依赖
该项目基于以下关键技术构建:
- LangChain框架:用于构建RAG流程的核心框架
- OpenAI/Groq API:提供大语言模型能力
- FAISS向量数据库:用于高效相似性搜索
- RAGAS评估框架:用于评估RAG系统质量
关键Python库
from langchain_openai import ChatOpenAI
from langchain_groq import ChatGroq
from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings
from ragas import evaluate
数据预处理流程
1. 文档加载与章节分割
项目首先将PDF文档分割为独立章节:
# 加载PDF文档
loader = PyPDFLoader(hp_pdf_path)
document = loader.load()
# 分割为章节
chapters = split_into_chapters(hp_pdf_path)
print(len(chapters)) # 输出章节数量
2. 文本清洗
使用辅助函数进行文本标准化处理:
# 替换制表符为空格
chapters = replace_t_with_space(chapters)
# 处理多余换行符
summary_text = replace_double_lines_with_one_line(summary_result["output_text"])
3. 引用提取
项目实现了专门的引用提取功能:
# 从文档中提取引用
book_quotes_list = extract_book_quotes_as_documents(document_cleaned)
文本摘要生成
摘要提示模板
定义了专业的摘要生成提示词:
summarization_prompt_template = """Write an extensive summary of the following:
{text}
SUMMARY:"""
动态摘要策略
根据文本长度自动选择摘要策略:
if num_tokens < gpt_35_turbo_max_tokens:
# 短文本使用"stuff"策略
chain = load_summarize_chain(llm, chain_type="stuff")
else:
# 长文本使用"map_reduce"策略
chain = load_summarize_chain(llm, chain_type="map_reduce")
向量编码与检索
1. 向量编码实现
项目实现了三种编码方式:
# 全书编码
chunks_vector_store = encode_book(hp_pdf_path)
# 章节摘要编码
chapter_summaries_vector_store = encode_chapter_summaries(chapter_summaries)
# 引用编码
book_quotes_vectorstore = encode_quotes(book_quotes_list)
2. 检索器配置
针对不同粒度配置检索器:
# 文本块检索器(返回1个最相关结果)
chunks_query_retriever = chunks_vector_store.as_retriever(search_kwargs={"k": 1})
# 章节摘要检索器
chapter_summaries_query_retriever = chapter_summaries_vector_store.as_retriever(search_kwargs={"k": 1})
系统评估
项目使用RAGAS框架进行多维度评估:
from ragas.metrics import (
answer_correctness,
faithfulness,
answer_relevancy,
context_recall,
answer_similarity
)
最佳实践与技巧
- 分块策略:使用重叠分块(200token重叠)确保上下文连贯性
- 模型选择:根据文本长度自动选择最优处理策略
- 性能优化:缓存向量存储避免重复计算
- 评估全面性:使用5种指标全面评估系统表现
总结
complex-RAG-guide项目提供了一个工业级RAG系统的完整实现范例,特别值得学习的是:
- 多粒度文本处理(全书、章节、引用)
- 动态处理策略选择
- 全面的评估体系
- 工程化的实现细节
这个项目是理解现代RAG系统工作原理和实践的绝佳材料,开发者可以基于此框架快速构建自己的知识问答系统。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C050
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Python开发者的macOS终极指南:VSCode安装配置全攻略 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
441
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
819
395
Ascend Extension for PyTorch
Python
249
285
React Native鸿蒙化仓库
JavaScript
276
329
暂无简介
Dart
701
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
140
50
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
678
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
555
111