**Redux Saga 测试指南**
2024-09-09 04:38:23作者:胡易黎Nicole
项目介绍
Redux Saga 测试计划 是一个专为简化 Redux Saga 测试过程而设计的工具库,它支持两种主要的测试方式:逐步测试生成器函数和运行完整 Saga 来断言副作用。这个项目由 Jeremy Fairbank 创建并维护,遵循 MIT 许可证。它旨在使 Saga 的测试既适合集成测试也适合单元测试,无论是精确测试效应及其顺序,还是仅在特定时刻测试 Saga 发出的某个动作,Redux Saga Test Plan 都提供了强大的支持。
项目快速启动
要迅速上手 Redux Saga 测试,首先你需要安装 redux-saga-test-plan
到你的开发依赖中:
npm install --save-dev redux-saga-test-plan
接下来,在你的测试文件中,你可以使用 SagaTester
来模拟 Redux 环境并测试 Saga 的行为。以下是一个基本的快速启动示例:
import { call, put } from 'redux-saga/effects';
import { SagaTester } from 'redux-saga-test-plan';
import { defaultState, reducer } from './yourAppReducer';
import { callApi, success } from './apiActions';
test('使用 redux-saga-tester 进行测试', async () => {
const sagaTester = new SagaTester({ initialState: defaultState, reducers: reducer });
// 开启 Saga
sagaTester.start(callApi);
// 触发 Saga 的 action
sagaTester.dispatch(actionToTriggerSaga());
// 等待特定的 action 被 dispatch
await sagaTester.waitFor(success);
// 断言指定的 action 是否被正确 dispatch
expect(sagaTester.getCalledActions()).toContainEqual(success({ response: 'mockedResponse' }));
// 检查状态是否已更新
expect(sagaTester.getState()).toEqual({ data: 'mockedResponse' });
});
应用案例和最佳实践
整合测试与预期效应
当你需要检查 Saga 执行的效应(如 API 调用)是否符合预期时,可以利用 expectSaga
提供的功能,结合 provide
方法注入预期值进行测试:
import { expectSaga } from 'redux-saga-test-plan';
test('整合测试例子', () => {
return expectSaga(callApi, 'url')
.provide([
[select(selectorFunction), expectedResult],
[call(apiFunction, 'url', expectedResult), mockApiResponse]
])
.put(success(mockApiResponse))
.run();
});
单元测试核心逻辑
对于单元测试,确保只测试 Saga 的逻辑,而不涉及外部系统交互:
test('单元测试 Saga 核心逻辑', () => {
return expectSaga(callApi, 'url')
.call(fakeApiCall, 'url', 'expectedResult')
.put(success('mockedResponse'))
.run();
});
典型生态项目
除了 redux-saga-test-plan
,还有其他几个相关库可以丰富你的测试策略,例如 redux-saga-test-engine
和社区中的其他工具。这些库提供相似但各有侧重的测试功能,可以根据项目需求选择合适的一套方案来保证你的 Redux Saga 逻辑得到充分测试。
通过以上内容,你应该能够顺利地集成 Redux Saga 测试到你的测试流程中,并利用这些工具有效地验证和保障你的 Saga 代码质量。记得,良好的测试实践是确保长期项目可持续性的重要基石。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp 全栈开发课程中的邮箱掩码项目问题解析2 freeCodeCamp JavaScript函数测验中关于函数返回值的技术解析3 freeCodeCamp课程中ARIA-hidden属性的技术解析4 freeCodeCamp课程中图片src属性验证漏洞的技术分析5 freeCodeCamp全栈开发认证课程中的变量声明测试问题解析6 freeCodeCamp注册表单项目:优化HTML表单元素布局指南7 freeCodeCamp排序可视化项目中Bubble Sort算法的实现问题分析8 Odin项目"构建食谱页面"练习的技术优化建议9 freeCodeCamp Markdown转换器需求澄清:多行标题处理10 freeCodeCamp现金找零项目测试用例优化建议
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133