**Redux Saga 测试指南**
2024-09-09 02:40:42作者:胡易黎Nicole
项目介绍
Redux Saga 测试计划 是一个专为简化 Redux Saga 测试过程而设计的工具库,它支持两种主要的测试方式:逐步测试生成器函数和运行完整 Saga 来断言副作用。这个项目由 Jeremy Fairbank 创建并维护,遵循 MIT 许可证。它旨在使 Saga 的测试既适合集成测试也适合单元测试,无论是精确测试效应及其顺序,还是仅在特定时刻测试 Saga 发出的某个动作,Redux Saga Test Plan 都提供了强大的支持。
项目快速启动
要迅速上手 Redux Saga 测试,首先你需要安装 redux-saga-test-plan 到你的开发依赖中:
npm install --save-dev redux-saga-test-plan
接下来,在你的测试文件中,你可以使用 SagaTester 来模拟 Redux 环境并测试 Saga 的行为。以下是一个基本的快速启动示例:
import { call, put } from 'redux-saga/effects';
import { SagaTester } from 'redux-saga-test-plan';
import { defaultState, reducer } from './yourAppReducer';
import { callApi, success } from './apiActions';
test('使用 redux-saga-tester 进行测试', async () => {
const sagaTester = new SagaTester({ initialState: defaultState, reducers: reducer });
// 开启 Saga
sagaTester.start(callApi);
// 触发 Saga 的 action
sagaTester.dispatch(actionToTriggerSaga());
// 等待特定的 action 被 dispatch
await sagaTester.waitFor(success);
// 断言指定的 action 是否被正确 dispatch
expect(sagaTester.getCalledActions()).toContainEqual(success({ response: 'mockedResponse' }));
// 检查状态是否已更新
expect(sagaTester.getState()).toEqual({ data: 'mockedResponse' });
});
应用案例和最佳实践
整合测试与预期效应
当你需要检查 Saga 执行的效应(如 API 调用)是否符合预期时,可以利用 expectSaga 提供的功能,结合 provide 方法注入预期值进行测试:
import { expectSaga } from 'redux-saga-test-plan';
test('整合测试例子', () => {
return expectSaga(callApi, 'url')
.provide([
[select(selectorFunction), expectedResult],
[call(apiFunction, 'url', expectedResult), mockApiResponse]
])
.put(success(mockApiResponse))
.run();
});
单元测试核心逻辑
对于单元测试,确保只测试 Saga 的逻辑,而不涉及外部系统交互:
test('单元测试 Saga 核心逻辑', () => {
return expectSaga(callApi, 'url')
.call(fakeApiCall, 'url', 'expectedResult')
.put(success('mockedResponse'))
.run();
});
典型生态项目
除了 redux-saga-test-plan,还有其他几个相关库可以丰富你的测试策略,例如 redux-saga-test-engine 和社区中的其他工具。这些库提供相似但各有侧重的测试功能,可以根据项目需求选择合适的一套方案来保证你的 Redux Saga 逻辑得到充分测试。
通过以上内容,你应该能够顺利地集成 Redux Saga 测试到你的测试流程中,并利用这些工具有效地验证和保障你的 Saga 代码质量。记得,良好的测试实践是确保长期项目可持续性的重要基石。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Jetson TX2开发板官方资源完全指南:从入门到精通 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
191
210
暂无简介
Dart
631
143
React Native鸿蒙化仓库
JavaScript
243
316
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
110
仓颉编译器源码及 cjdb 调试工具。
C++
128
858
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
211