理解pykan项目中KAN与MultKAN的差异及训练技巧
2025-05-14 23:45:59作者:姚月梅Lane
在机器学习模型开发过程中,我们经常会遇到模型更新后性能变化的问题。本文将以pykan项目中的KAN和MultKAN模型为例,探讨两者之间的差异以及训练过程中的关键技巧。
KAN与MultKAN的基本关系
KAN(Kolmogorov-Arnold Network)是一种基于Kolmogorov-Arnold表示定理构建的神经网络结构。MultKAN是KAN的一个扩展版本,主要增加了乘法运算功能。理论上,当不使用乘法运算时,MultKAN应该与KAN表现一致。
然而,在实际应用中,即使不启用乘法功能,MultKAN与原始KAN在以下方面可能存在差异:
- 参数初始化策略
- 随机数种子处理方式
- 梯度更新机制
- 网格调整算法
训练过程中的常见问题
在将代码从KAN迁移到MultKAN时,开发者可能会遇到模型无法收敛的问题。这通常表现为:
- 初始损失值合理
- 训练几轮后损失值变为NaN
- 模型参数出现异常值
关键训练参数解析
在pykan项目中,有几个关键参数对模型训练稳定性有重要影响:
-
lamb参数:控制正则化强度。经验表明,0.1的值可能过大,建议从更小的值(如0.01)开始尝试。
-
update_grid参数:控制是否在训练过程中更新网格。设置为False可以显著提高训练稳定性,特别是在模型结构较深或输入维度较高时。
-
lamb_entropy和lamb_l1:这两个正则化参数也需要谨慎调整,过大可能导致模型欠拟合。
实际应用建议
对于高维输入(如1347个特征)的情况,建议采用以下训练策略:
- 初始阶段关闭网格更新:
model.fit(dataset, steps=100, update_grid=False)
- 使用较小的正则化系数:
model.fit(dataset, steps=100, lamb=0.01)
- 分阶段训练:先使用较少的神经元和简单结构进行初步训练,再逐步增加复杂度。
总结
理解模型版本间的细微差异对于成功迁移项目至关重要。在pykan项目中,从KAN迁移到MultKAN时,即使不启用乘法功能,也需要关注初始化策略和训练参数的变化。通过合理调整正则化强度和网格更新策略,可以有效解决训练不稳定的问题。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
React Native鸿蒙化仓库
JavaScript
287
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
226
91
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
439
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19