理解pykan项目中KAN与MultKAN的差异及训练技巧
2025-05-14 23:56:38作者:姚月梅Lane
在机器学习模型开发过程中,我们经常会遇到模型更新后性能变化的问题。本文将以pykan项目中的KAN和MultKAN模型为例,探讨两者之间的差异以及训练过程中的关键技巧。
KAN与MultKAN的基本关系
KAN(Kolmogorov-Arnold Network)是一种基于Kolmogorov-Arnold表示定理构建的神经网络结构。MultKAN是KAN的一个扩展版本,主要增加了乘法运算功能。理论上,当不使用乘法运算时,MultKAN应该与KAN表现一致。
然而,在实际应用中,即使不启用乘法功能,MultKAN与原始KAN在以下方面可能存在差异:
- 参数初始化策略
- 随机数种子处理方式
- 梯度更新机制
- 网格调整算法
训练过程中的常见问题
在将代码从KAN迁移到MultKAN时,开发者可能会遇到模型无法收敛的问题。这通常表现为:
- 初始损失值合理
- 训练几轮后损失值变为NaN
- 模型参数出现异常值
关键训练参数解析
在pykan项目中,有几个关键参数对模型训练稳定性有重要影响:
-
lamb参数:控制正则化强度。经验表明,0.1的值可能过大,建议从更小的值(如0.01)开始尝试。
-
update_grid参数:控制是否在训练过程中更新网格。设置为False可以显著提高训练稳定性,特别是在模型结构较深或输入维度较高时。
-
lamb_entropy和lamb_l1:这两个正则化参数也需要谨慎调整,过大可能导致模型欠拟合。
实际应用建议
对于高维输入(如1347个特征)的情况,建议采用以下训练策略:
- 初始阶段关闭网格更新:
model.fit(dataset, steps=100, update_grid=False)
- 使用较小的正则化系数:
model.fit(dataset, steps=100, lamb=0.01)
- 分阶段训练:先使用较少的神经元和简单结构进行初步训练,再逐步增加复杂度。
总结
理解模型版本间的细微差异对于成功迁移项目至关重要。在pykan项目中,从KAN迁移到MultKAN时,即使不启用乘法功能,也需要关注初始化策略和训练参数的变化。通过合理调整正则化强度和网格更新策略,可以有效解决训练不稳定的问题。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
509

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
257
300

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5