如何用雀魂牌谱屋提升你的段位?超实用数据分析工具全攻略
雀魂牌谱屋(amae-koromo)是一款专为雀魂玩家打造的免费牌谱分析工具,能帮助你追踪对局数据、优化游戏策略,轻松提升段位水平。无论你是刚入玉之间的新手,还是冲击王座之间的高手,这款开源工具都能成为你的雀魂上分利器!
🌟 雀魂牌谱屋是什么?
雀魂牌谱屋是一个专注于雀魂(Mahjong Soul)游戏数据的开源项目,主要功能包括:
- 自动记录金之间、玉之间及王座之间的牌谱数据(自2019年11月起持续收集)
- 生成胜率、和牌率、放铳率等关键指标的可视化图表
- 支持玩家战绩查询与多维度数据对比
- 提供段位波动趋势与稳定等级估算
所有数据会在对局结束后数分钟至数小时内更新,让你及时掌握自己的游戏表现。
图:雀魂牌谱屋的玩家数据统计页面,展示段位走势与核心指标分析
🚀 3分钟快速上手指南
1️⃣ 一键部署本地服务
git clone https://gitcode.com/gh_mirrors/am/amae-koromo
cd amae-koromo
npm install
npm start
服务启动后,访问 http://localhost:3000 即可打开本地版雀魂牌谱屋。
2️⃣ 核心功能模块速览
- 战绩查询:在
src/components/gameRecords/模块中输入玩家ID,即可查看详细对局历史 - 数据统计:
src/components/statistics/目录下提供多种图表分析,包括:- 段位分布饼图(simplePieChart.tsx)
- 顺位率趋势图(rankRate.tsx)
- 役种和出统计(fanStats.tsx)
- 玩家对比:通过
src/components/playerDetails/功能,可同时分析多名玩家的对战风格
🎯 提升段位的4个实战技巧
1. 用放铳率数据优化防守策略
在「玩家详情」页面的「近期顺位」图表中(recentRank.tsx),重点关注放铳率 > 15% 的对局。通过牌谱回放分析:
- 哪些巡目容易做出错误判断?
- 面对不同对手时的防守效率差异?
2. 利用和率数据调整进攻节奏
当你的和牌率低于20% 时,可尝试:
- 在
filterPanel.tsx中筛选「和牌成功」的对局 - 分析高和率对局中的立直时机与牌型选择
- 对比低和率对局的差异点
3. 研究对手习惯的秘密武器
通过 sameMatchRate.tsx 功能查看与特定对手的交手记录,建立对手数据库:
- 记录常出役种(参考 fanStats.tsx 数据)
- 统计不同座位的胜负率(rankBySeats.tsx)
- 分析对手的舍牌习惯
4. 制定段位突破计划
使用 estimatedStableLevel.tsx 功能计算你的稳定段位:
- 若估算段位 > 当前段位:可适当增加进攻频率
- 若估算段位 < 当前段位:优先强化防守训练
🛠️ 进阶功能与生态扩展
数据同步与扩展
- 实时更新:配置
src/data/source/loader.ts中的定时任务,可自动同步最新对局数据 - 自定义指标:修改
src/components/statistics/dataByRank.tsx,添加个性化分析维度 - 移动端适配:通过
src/components/layout/container.tsx调整响应式布局
社区贡献指南
项目欢迎提交PR改进以下方向:
- 新增数据分析图表(扩展
src/components/charts/) - 优化移动端体验(改进
src/components/app/theme.tsx) - 增加多语言支持(完善
src/locales/目录下翻译文件)
❓ 常见问题解答
Q: 为什么我的对局数据没有显示?
A: 数据收集从2019年11月29日开始,之前的对局无法获取。新对局通常在结束后1小时内更新。
Q: 如何导出我的分析报告?
A: 目前可通过截图工具保存图表,后续版本将支持 src/utils/ 目录下的导出功能。
Q: 能否分析天凤/雀姬的数据?
A: 当前版本仅支持雀魂数据,多平台支持计划在后续版本开发。
🎁 写在最后
雀魂牌谱屋(amae-koromo)不仅是数据分析工具,更是每位雀魂玩家的「段位提升教练」。通过科学分析300+对局数据,大多数玩家能在1个月内实现至少1个段位的提升。
现在就用 npm start 启动你的数据分析之旅,让每一局都成为进步的阶梯!
注:本项目数据仅供学习交流,请勿用于商业用途。所有商标归原作者所有。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00

