Sentence-Transformers项目中CrossEncoder在float16精度下的训练问题分析
2025-05-13 21:54:23作者:舒璇辛Bertina
问题背景
在使用Sentence-Transformers库中的CrossEncoder进行模型训练时,开发者发现当模型以torch.float16精度加载并进行微调后,预测结果会出现NaN值。这一问题尤其在使用较大模型(如1B参数量的LLaMA)时更为突出,因为float16精度可以显著减少内存占用。
问题现象
具体表现为:
- 使用float16精度初始化CrossEncoder模型
- 正常进行微调训练
- 训练完成后进行预测时,输出结果为NaN
而在不进行微调的情况下,直接使用预训练模型进行预测则能获得正常结果。
技术分析
float16训练的特点
float16(半精度浮点数)在深度学习训练中主要有以下优势:
- 减少约50%的内存占用
- 可能加快训练速度
- 允许部署更大的模型
但同时也有以下挑战:
- 数值范围较小,容易导致梯度下溢
- 精度损失可能影响模型收敛
- 某些运算在float16下不稳定
CrossEncoder的特殊性
CrossEncoder是Sentence-Transformers中用于句子对分类的模型,相比普通的Transformer模型:
- 需要处理两个句子的交互
- 通常包含额外的分类层
- 微调过程涉及更复杂的梯度计算
这些特性使得它在float16精度下更容易出现数值不稳定的问题。
解决方案
经过技术验证,有以下几种可行的解决方案:
方案一:混合精度训练
- 以float32精度加载模型
- 训练时启用自动混合精度(AMP)
- 保存训练后的模型
- 使用时可以以float16加载
# 初始化时使用默认精度
model = CrossEncoder('sentence-transformers/all-mpnet-base-v2', num_labels=1)
# 训练时启用AMP
model.fit(..., use_amp=True)
# 保存模型
model.save('path/to/model')
# 使用时可以加载为float16
automodel_args = {"torch_dtype": torch.float16}
loaded_model = CrossEncoder('path/to/model', automodel_args=automodel_args)
方案二:使用bfloat16精度
bfloat16是另一种16位浮点格式,相比float16:
- 保留了与float32相同的指数位
- 减少了精度位
- 数值范围更大,更适合深度学习
automodel_args = {"torch_dtype": torch.bfloat16}
model = CrossEncoder('sentence-transformers/all-mpnet-base-v2',
num_labels=1,
automodel_args=automodel_args)
最佳实践建议
- 对于小型模型(<100M参数),可以直接使用float32精度
- 中型模型(100M-1B参数)建议使用混合精度训练
- 大型模型(>1B参数)优先考虑bfloat16
- 训练过程中监控loss值,确保没有出现NaN
- 必要时可以添加梯度裁剪(gradient clipping)
技术原理深入
为什么float16训练会导致NaN?
- 梯度下溢:float16的数值范围较小(约5.96e-8到65504),在反向传播过程中,小梯度可能变为0
- 权重更新不稳定:当学习率较大时,权重更新可能超出float16表示范围
- 激活函数饱和:某些激活函数(如softmax)在float16下更容易出现数值不稳定
- 层归一化问题:归一化层中的方差计算在float16下容易溢出
相比之下,bfloat16保留了8位指数(与float32相同),能够更好地处理这些情况。
总结
在使用Sentence-Transformers的CrossEncoder进行模型微调时,合理选择数值精度对训练稳定性至关重要。对于大多数应用场景,推荐采用混合精度训练方案,既能保证训练稳定性,又能获得float16带来的内存优势。对于特别大的模型,bfloat16是更可靠的选择。开发者应根据具体模型大小和硬件条件,选择最适合的精度策略。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0128AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
229
2.3 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
76

React Native鸿蒙化仓库
JavaScript
216
291

暂无简介
Dart
531
117

仓颉编程语言运行时与标准库。
Cangjie
122
93

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
990
587

Ascend Extension for PyTorch
Python
73
102

仓颉编程语言测试用例。
Cangjie
34
59

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
401