DeepChat项目中Markdown与HTML混合渲染的技术实践
2025-07-03 16:57:35作者:胡易黎Nicole
背景与问题场景
在基于DeepChat构建的对话系统中,开发者经常需要处理富文本内容的渲染问题。一个典型场景是:消息内容前半部分需要以Markdown格式呈现(如代码块、标题等),而后半部分则需要自定义HTML样式(如引用框、按钮等)。然而在实际开发中,开发者发现当使用HTML类型渲染时,Markdown语法无法正常解析,导致样式失效。
技术原理分析
1. Markdown与HTML的渲染机制
Markdown本质上是一种轻量级标记语言,最终会被转换为HTML进行渲染。现代Markdown解析器(如remarkable)通常默认允许内嵌HTML标签,这带来了便利性,但也存在安全风险:
- 安全性问题:恶意用户可能通过HTML注入XSS攻击代码
- 渲染冲突:当Markdown内容包含HTML标签时,解析器可能无法区分"需要原样展示的代码"和"需要执行的标签"
2. DeepChat的安全策略
DeepChat在2.1.0版本后出于安全考虑,默认禁用了HTML类型的Markdown解析。这是导致开发者遇到"Markdown在HTML模式下失效"问题的根本原因。这种设计虽然提高了安全性,但也给需要混合渲染的场景带来了挑战。
解决方案实践
方案一:强制重渲染机制(适用于旧版本)
对于使用较旧版本的开发者,可以通过以下workaround实现混合渲染:
import { marked } from 'marked'
// 在消息处理逻辑中
signals.onResponse({
html: marked(markdownContent),
overwrite: true // 强制重渲染
})
技术要点:
- 使用marked库预先将Markdown转换为HTML
- 通过overwrite参数确保内容更新时完全重新渲染
- 将转换后的HTML作为html类型内容传递
优缺点:
- 优点:兼容性好,适用于各种版本
- 缺点:需要手动管理转换过程,可能影响性能
方案二:使用remarkable配置(2.1.1+版本推荐)
DeepChat 2.1.1版本引入了remarkable配置项,提供了更优雅的解决方案:
const chatOptions = {
messages: {
remarkable: {
html: true, // 允许解析HTML
breaks: true // 自动转换换行符
// 其他remarkable配置...
}
}
}
最佳实践建议:
- 生产环境应严格限制HTML标签白名单
- 对于用户生成内容,建议先进行消毒处理
- 复杂样式推荐使用CSS类而非内联样式
高级应用:实现打字机效果
结合上述技术,可以实现更丰富的交互效果。例如实现Markdown内容的逐字输出效果:
let typedContent = ''
const typewriterEffect = (markdown) => {
typedContent += markdown.charAt(currentIndex)
signals.onResponse({
html: marked(typedContent),
overwrite: true
})
}
注意事项:
- 频繁调用重渲染可能影响性能
- 建议添加节流控制
- 对于长内容考虑分块渲染
安全建议
- 始终对用户输入进行消毒处理
- 在允许HTML时,配置严格的内容安全策略(CSP)
- 定期更新依赖库以获取安全补丁
- 对于敏感场景,考虑使用纯文本模式
总结
DeepChat项目中的内容渲染机制经历了从宽松到严格的安全演进。理解Markdown与HTML的渲染原理后,开发者可以通过合理配置或适当的技术方案实现复杂的渲染需求。在追求效果的同时,不应忽视安全性考量,建议根据实际场景选择最适合的技术方案。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0100AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
203
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
84

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133