深入解析ktransformers项目中的推理性能优化问题
2025-05-16 05:42:34作者:田桥桑Industrious
ktransformers是一个基于PyTorch的开源项目,专注于大语言模型的高效推理。近期社区中关于其推理性能的讨论引起了广泛关注,特别是预填充(prefill)和解码(decode)阶段的token处理速度问题。
性能测试环境配置
在标准测试环境下,项目团队使用了以下硬件配置:
- CPU:双路Intel Xeon Gold 6430处理器(共58核)
- GPU:NVIDIA RTX 4090(24GB显存)
- 内存:944GB DDR4
- 存储系统:高性能NVMe SSD
软件栈配置包括:
- Ubuntu 22.04 LTS操作系统
- CUDA 12.3和NVIDIA 12.2驱动
- PyTorch 2.6.0+cu124
- Flash Attention 2.7.1
性能表现分析
在实际测试中,项目团队观察到了以下性能指标:
- 预填充阶段最高达到88.2 tokens/s
- 解码阶段最高达到13.5 tokens/s
然而,社区成员在类似配置下报告的性能数据存在显著差异:
- 预填充阶段:13.35-50.53 tokens/s
- 解码阶段:10.11 tokens/s
性能差异的关键因素
经过深入分析,我们发现影响性能表现的主要因素包括:
-
输入长度影响:预填充阶段的性能与输入prompt长度密切相关。较长的prompt能够更好地利用并行计算能力,从而获得更高的吞吐量。
-
内存带宽利用率:测试显示实际内存带宽利用率约为理论值的62.5%(352GB/s vs 563GB/s),这表明存在进一步优化的空间。
-
资源分配策略:通过调整cpu_infer参数(65核效果最佳),可以显著影响性能表现。这反映了CPU-GPU协同计算的重要性。
-
预热效果:充分的系统预热对稳定性能表现至关重要,未经预热的测试可能导致性能数据偏低。
优化建议
对于希望获得最佳性能的用户,我们建议:
-
合理配置计算资源:根据实际硬件条件调整cpu_infer参数,找到CPU和GPU负载的最佳平衡点。
-
关注内存子系统:确保内存带宽得到充分利用,考虑使用numactl等工具优化内存访问模式。
-
测试方法标准化:采用足够长的prompt进行测试,并确保系统经过充分预热,以获得具有代表性的性能数据。
-
监控资源使用:实时监控内存和显存使用情况,避免资源争用导致的性能下降。
通过以上优化措施,用户可以在自己的硬件环境中获得接近官方测试数据的性能表现,充分发挥ktransformers项目的潜力。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0360Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++086Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
189
2.14 K

React Native鸿蒙化仓库
C++
205
284

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

Ascend Extension for PyTorch
Python
58
89

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
967
572

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
547
76

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
192

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
392
23