Optax项目中L-BFGS优化器性能分析与优化实践
2025-07-07 12:40:08作者:韦蓉瑛
背景介绍
Optax是Google DeepMind开发的一个基于JAX的优化器库,提供了多种优化算法的实现。在实际使用中,有开发者发现Optax中的L-BFGS优化器相比SciPy中的实现性能明显较慢,大约慢了10倍左右。这促使我们深入分析问题原因并寻找优化方案。
问题重现与分析
开发者提供了一个完整的基准测试代码,比较了三种实现方式:
- SciPy的L-BFGS-B实现
- 自行实现的Optax L-BFGS循环
- 使用Optax文档示例中的L-BFGS实现
初始测试结果显示,Optax的实现确实比SciPy慢很多。通过深入分析,我们发现性能差异主要来自以下几个方面:
- JAX编译开销:在未正确预编译的情况下,每次迭代都会产生额外的编译开销
- 急切执行模式:未充分JIT化的代码会以急切模式执行,导致性能下降
- 缓存不友好:某些闭包结构不利于JAX的编译缓存机制
性能优化方案
针对上述问题,我们实施了以下优化措施:
- 预编译关键函数:对优化循环中的核心计算步骤进行预编译
- 使用JIT装饰器:确保关键路径上的函数都被JIT化
- 优化缓存机制:调整代码结构使其更符合JAX的缓存机制
优化后的关键代码如下:
# 预编译while循环
while_loop = jax.jit(lambda carry: jax.lax.while_loop(continuing_criterion, step, carry))
_ = while_loop(init_carry) # 预编译
# 实际计时
start = time.time()
final_params, final_state = while_loop(init_carry)
优化效果对比
经过上述优化后,性能有了显著提升:
方法 | 时间(s) | 迭代次数 | 最终损失
-----------------------------------------
SciPy L-BFGS-B | 0.065 | 498 | 3.64e-10
Optax优化前 | 0.56 | 495 | 3.88e-07
Optax优化后 | 0.001 | 516 | 6.62e-07
可以看到,优化后的Optax实现不仅比原始实现快得多,甚至比SciPy的实现还要快。这说明JAX的优化潜力是很大的,关键在于正确使用其特性。
技术要点总结
-
编译开销管理:在JAX中,首次执行函数时会进行编译,这会产生额外开销。对于性能关键的代码,应该提前进行预编译。
-
JIT使用技巧:
- 使用
@jax.jit装饰器标记需要优化的函数 - 对于控制流结构(如while循环),可以考虑使用
jax.lax.while_loop - 避免在计时循环中包含未JIT化的操作
- 使用
-
调试工具:
jax.log_compiles():帮助识别哪些函数被重新编译jax.config.update("jax_explain_cache_misses", True):分析缓存失效原因
-
与SciPy的交互:可以将JAX编译的函数直接传递给SciPy优化器,有时能获得更好的性能。
实践建议
对于需要在JAX生态中使用L-BFGS等优化算法的开发者,我们建议:
- 优先使用Optax文档中推荐的实现方式
- 对于性能关键的应用,务必进行预编译
- 善用JAX提供的性能分析工具
- 在简单问题上,SciPy可能仍然是一个不错的选择
- 对于复杂问题或需要GPU加速的场景,Optax可能是更好的选择
通过这次性能优化实践,我们不仅解决了具体问题,也加深了对JAX性能特性的理解。这为后续在JAX生态中开发高效优化算法提供了宝贵经验。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
198
81
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
846
426
Ascend Extension for PyTorch
Python
275
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
694