Optax项目中L-BFGS优化器性能分析与优化实践
2025-07-07 11:44:39作者:韦蓉瑛
背景介绍
Optax是Google DeepMind开发的一个基于JAX的优化器库,提供了多种优化算法的实现。在实际使用中,有开发者发现Optax中的L-BFGS优化器相比SciPy中的实现性能明显较慢,大约慢了10倍左右。这促使我们深入分析问题原因并寻找优化方案。
问题重现与分析
开发者提供了一个完整的基准测试代码,比较了三种实现方式:
- SciPy的L-BFGS-B实现
- 自行实现的Optax L-BFGS循环
- 使用Optax文档示例中的L-BFGS实现
初始测试结果显示,Optax的实现确实比SciPy慢很多。通过深入分析,我们发现性能差异主要来自以下几个方面:
- JAX编译开销:在未正确预编译的情况下,每次迭代都会产生额外的编译开销
- 急切执行模式:未充分JIT化的代码会以急切模式执行,导致性能下降
- 缓存不友好:某些闭包结构不利于JAX的编译缓存机制
性能优化方案
针对上述问题,我们实施了以下优化措施:
- 预编译关键函数:对优化循环中的核心计算步骤进行预编译
- 使用JIT装饰器:确保关键路径上的函数都被JIT化
- 优化缓存机制:调整代码结构使其更符合JAX的缓存机制
优化后的关键代码如下:
# 预编译while循环
while_loop = jax.jit(lambda carry: jax.lax.while_loop(continuing_criterion, step, carry))
_ = while_loop(init_carry) # 预编译
# 实际计时
start = time.time()
final_params, final_state = while_loop(init_carry)
优化效果对比
经过上述优化后,性能有了显著提升:
方法 | 时间(s) | 迭代次数 | 最终损失
-----------------------------------------
SciPy L-BFGS-B | 0.065 | 498 | 3.64e-10
Optax优化前 | 0.56 | 495 | 3.88e-07
Optax优化后 | 0.001 | 516 | 6.62e-07
可以看到,优化后的Optax实现不仅比原始实现快得多,甚至比SciPy的实现还要快。这说明JAX的优化潜力是很大的,关键在于正确使用其特性。
技术要点总结
-
编译开销管理:在JAX中,首次执行函数时会进行编译,这会产生额外开销。对于性能关键的代码,应该提前进行预编译。
-
JIT使用技巧:
- 使用
@jax.jit
装饰器标记需要优化的函数 - 对于控制流结构(如while循环),可以考虑使用
jax.lax.while_loop
- 避免在计时循环中包含未JIT化的操作
- 使用
-
调试工具:
jax.log_compiles()
:帮助识别哪些函数被重新编译jax.config.update("jax_explain_cache_misses", True)
:分析缓存失效原因
-
与SciPy的交互:可以将JAX编译的函数直接传递给SciPy优化器,有时能获得更好的性能。
实践建议
对于需要在JAX生态中使用L-BFGS等优化算法的开发者,我们建议:
- 优先使用Optax文档中推荐的实现方式
- 对于性能关键的应用,务必进行预编译
- 善用JAX提供的性能分析工具
- 在简单问题上,SciPy可能仍然是一个不错的选择
- 对于复杂问题或需要GPU加速的场景,Optax可能是更好的选择
通过这次性能优化实践,我们不仅解决了具体问题,也加深了对JAX性能特性的理解。这为后续在JAX生态中开发高效优化算法提供了宝贵经验。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0294- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

deepin linux kernel
C
21
5

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
246
288

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

智能无人机路径规划仿真系统是一个具有操作控制精细、平台整合性强、全方向模型建立与应用自动化特点的软件。它以A、B两国在C区开展无人机战争为背景,该系统的核心功能是通过仿真平台规划无人机航线,并进行验证输出,数据可导入真实无人机,使其按照规定路线精准抵达战场任一位置,支持多人多设备编队联合行动。
JavaScript
78
55

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

基于全新 DevUI Design 设计体系的 Vue3 组件库,面向研发工具的开源前端解决方案。
TypeScript
615
74

React Native鸿蒙化仓库
C++
176
260

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K