Optax项目中L-BFGS优化器性能分析与优化实践
2025-07-07 12:40:08作者:韦蓉瑛
背景介绍
Optax是Google DeepMind开发的一个基于JAX的优化器库,提供了多种优化算法的实现。在实际使用中,有开发者发现Optax中的L-BFGS优化器相比SciPy中的实现性能明显较慢,大约慢了10倍左右。这促使我们深入分析问题原因并寻找优化方案。
问题重现与分析
开发者提供了一个完整的基准测试代码,比较了三种实现方式:
- SciPy的L-BFGS-B实现
- 自行实现的Optax L-BFGS循环
- 使用Optax文档示例中的L-BFGS实现
初始测试结果显示,Optax的实现确实比SciPy慢很多。通过深入分析,我们发现性能差异主要来自以下几个方面:
- JAX编译开销:在未正确预编译的情况下,每次迭代都会产生额外的编译开销
- 急切执行模式:未充分JIT化的代码会以急切模式执行,导致性能下降
- 缓存不友好:某些闭包结构不利于JAX的编译缓存机制
性能优化方案
针对上述问题,我们实施了以下优化措施:
- 预编译关键函数:对优化循环中的核心计算步骤进行预编译
- 使用JIT装饰器:确保关键路径上的函数都被JIT化
- 优化缓存机制:调整代码结构使其更符合JAX的缓存机制
优化后的关键代码如下:
# 预编译while循环
while_loop = jax.jit(lambda carry: jax.lax.while_loop(continuing_criterion, step, carry))
_ = while_loop(init_carry) # 预编译
# 实际计时
start = time.time()
final_params, final_state = while_loop(init_carry)
优化效果对比
经过上述优化后,性能有了显著提升:
方法 | 时间(s) | 迭代次数 | 最终损失
-----------------------------------------
SciPy L-BFGS-B | 0.065 | 498 | 3.64e-10
Optax优化前 | 0.56 | 495 | 3.88e-07
Optax优化后 | 0.001 | 516 | 6.62e-07
可以看到,优化后的Optax实现不仅比原始实现快得多,甚至比SciPy的实现还要快。这说明JAX的优化潜力是很大的,关键在于正确使用其特性。
技术要点总结
-
编译开销管理:在JAX中,首次执行函数时会进行编译,这会产生额外开销。对于性能关键的代码,应该提前进行预编译。
-
JIT使用技巧:
- 使用
@jax.jit装饰器标记需要优化的函数 - 对于控制流结构(如while循环),可以考虑使用
jax.lax.while_loop - 避免在计时循环中包含未JIT化的操作
- 使用
-
调试工具:
jax.log_compiles():帮助识别哪些函数被重新编译jax.config.update("jax_explain_cache_misses", True):分析缓存失效原因
-
与SciPy的交互:可以将JAX编译的函数直接传递给SciPy优化器,有时能获得更好的性能。
实践建议
对于需要在JAX生态中使用L-BFGS等优化算法的开发者,我们建议:
- 优先使用Optax文档中推荐的实现方式
- 对于性能关键的应用,务必进行预编译
- 善用JAX提供的性能分析工具
- 在简单问题上,SciPy可能仍然是一个不错的选择
- 对于复杂问题或需要GPU加速的场景,Optax可能是更好的选择
通过这次性能优化实践,我们不仅解决了具体问题,也加深了对JAX性能特性的理解。这为后续在JAX生态中开发高效优化算法提供了宝贵经验。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178