Optax项目中L-BFGS优化器性能分析与优化实践
2025-07-07 11:54:21作者:韦蓉瑛
背景介绍
Optax是Google DeepMind开发的一个基于JAX的优化器库,提供了多种优化算法的实现。在实际使用中,有开发者发现Optax中的L-BFGS优化器相比SciPy中的实现性能明显较慢,大约慢了10倍左右。这促使我们深入分析问题原因并寻找优化方案。
问题重现与分析
开发者提供了一个完整的基准测试代码,比较了三种实现方式:
- SciPy的L-BFGS-B实现
- 自行实现的Optax L-BFGS循环
- 使用Optax文档示例中的L-BFGS实现
初始测试结果显示,Optax的实现确实比SciPy慢很多。通过深入分析,我们发现性能差异主要来自以下几个方面:
- JAX编译开销:在未正确预编译的情况下,每次迭代都会产生额外的编译开销
- 急切执行模式:未充分JIT化的代码会以急切模式执行,导致性能下降
- 缓存不友好:某些闭包结构不利于JAX的编译缓存机制
性能优化方案
针对上述问题,我们实施了以下优化措施:
- 预编译关键函数:对优化循环中的核心计算步骤进行预编译
- 使用JIT装饰器:确保关键路径上的函数都被JIT化
- 优化缓存机制:调整代码结构使其更符合JAX的缓存机制
优化后的关键代码如下:
# 预编译while循环
while_loop = jax.jit(lambda carry: jax.lax.while_loop(continuing_criterion, step, carry))
_ = while_loop(init_carry) # 预编译
# 实际计时
start = time.time()
final_params, final_state = while_loop(init_carry)
优化效果对比
经过上述优化后,性能有了显著提升:
方法 | 时间(s) | 迭代次数 | 最终损失
-----------------------------------------
SciPy L-BFGS-B | 0.065 | 498 | 3.64e-10
Optax优化前 | 0.56 | 495 | 3.88e-07
Optax优化后 | 0.001 | 516 | 6.62e-07
可以看到,优化后的Optax实现不仅比原始实现快得多,甚至比SciPy的实现还要快。这说明JAX的优化潜力是很大的,关键在于正确使用其特性。
技术要点总结
-
编译开销管理:在JAX中,首次执行函数时会进行编译,这会产生额外开销。对于性能关键的代码,应该提前进行预编译。
-
JIT使用技巧:
- 使用
@jax.jit
装饰器标记需要优化的函数 - 对于控制流结构(如while循环),可以考虑使用
jax.lax.while_loop
- 避免在计时循环中包含未JIT化的操作
- 使用
-
调试工具:
jax.log_compiles()
:帮助识别哪些函数被重新编译jax.config.update("jax_explain_cache_misses", True)
:分析缓存失效原因
-
与SciPy的交互:可以将JAX编译的函数直接传递给SciPy优化器,有时能获得更好的性能。
实践建议
对于需要在JAX生态中使用L-BFGS等优化算法的开发者,我们建议:
- 优先使用Optax文档中推荐的实现方式
- 对于性能关键的应用,务必进行预编译
- 善用JAX提供的性能分析工具
- 在简单问题上,SciPy可能仍然是一个不错的选择
- 对于复杂问题或需要GPU加速的场景,Optax可能是更好的选择
通过这次性能优化实践,我们不仅解决了具体问题,也加深了对JAX性能特性的理解。这为后续在JAX生态中开发高效优化算法提供了宝贵经验。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++098AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
203
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
84

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133