CoreMLTools模型转换中的数值溢出问题分析与解决方案
2025-06-12 08:09:15作者:昌雅子Ethen
问题背景
在使用CoreMLTools将PyTorch模型转换为Core ML格式时,开发者可能会遇到数值溢出问题。具体表现为转换过程中出现RuntimeWarning警告,如"overflow encountered in true_divide"和"overflow encountered in subtract",最终导致转换后的模型输出结果与原始PyTorch模型不一致,出现inf或nan值。
问题分析
该问题主要发生在处理复数除法运算时。在原始PyTorch模型中,复数除法通过分解实部和虚部进行计算,公式如下:
real_result = (real_a * real_b + imag_a * imag_b) / denominator
imag_result = (imag_a * real_b - real_a * imag_b) / denominator
其中denominator = real_b² + imag_b²
当CoreMLTools进行模型转换时,默认会使用float16精度进行计算,而PyTorch模型通常使用float32精度。这种精度差异会导致:
- float16的数值范围(-65504 ~ +65504)远小于float32(约-3.4e38 ~ +3.4e38)
- 在计算大数值的平方或除法时,float16更容易出现溢出
- 当denominator过小时,float16的除法运算会产生inf值
解决方案
要解决这个问题,可以在CoreMLTools转换时显式指定计算精度:
mlmodel = ct.convert(
trace,
inputs=[input_a],
minimum_deployment_target=ct.target.iOS16,
compute_precision=ct.precision.FLOAT32 # 强制使用float32精度
)
技术建议
-
精度选择:对于涉及大数值范围或敏感数值计算(如复数运算)的模型,建议始终使用FLOAT32精度
-
数值稳定性检查:
- 在模型转换前后都应检查输出结果的有效性
- 使用torch.isnan()和torch.isinf()检测异常值
- 对Core ML模型输出使用numpy.isnan()和numpy.isinf()检查
-
复数运算优化:
- 考虑对输入数据进行归一化处理
- 在除法运算前添加小的epsilon值防止除以零
- 对极端值进行裁剪(clipping)
-
模型验证:
- 建立自动化测试验证转换前后模型的一致性
- 对关键运算层进行单独测试
- 使用代表性输入数据验证模型行为
总结
CoreMLTools在模型转换过程中默认使用float16精度可能导致数值溢出问题,特别是在处理复数运算等敏感计算时。通过显式指定FLOAT32计算精度可以有效解决这一问题。开发者应当充分了解不同精度格式的数值特性,并在模型转换过程中进行充分的验证测试,确保转换后的模型保持与原始模型一致的数值行为。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355