Torchmetrics中实现可微分的VMAF视频质量评估指标
2025-07-03 12:55:56作者:昌雅子Ethen
背景介绍
视频多方法评估融合(VMAF)是Netflix开发的一种广泛使用的视频质量评估指标,它结合了多个基础质量指标来预测人类对视频质量的感知评分。传统的VMAF实现基于C语言,无法直接集成到深度学习训练流程中作为损失函数使用。
技术突破
最近出现了一个基于PyTorch实现的可微分VMAF版本,这个实现具有以下特点:
- 完全基于PyTorch实现,无需依赖原始C语言二进制文件
- 支持自动微分,可以直接作为损失函数使用
- 保留了VMAF的核心评估能力
- 提供了灵活的配置选项
实现细节
该PyTorch实现包含了VMAF的主要组件:
- 时间池化(temporal pooling)功能
- 运动信息处理(enable_motion)
- 分数裁剪(clip_score)选项
- 支持单帧图像和视频序列评估
使用示例
在实际应用中,可以结合其他损失函数(如MSE)一起使用。以下是一个典型的使用范例:
import torch
from torch import nn
from vmaf_torch import VMAF
class VMAFLoss(nn.Module):
def __init__(self):
super().__init__()
# 初始化VMAF评估器
self.vmaf = VMAF(temporal_pooling=True,
enable_motion=True,
clip_score=True,
NEG=False).to(torch.float32)
# 冻结所有参数
for param in self.vmaf.parameters():
param.requires_grad = False
def get_luma(self, video):
# 从RGB视频中提取亮度分量
r = video[..., 0, :, :]
g = video[..., 1, :, :]
b = video[..., 2, :, :]
y = 0.299 * r + 0.587 * g + 0.114 * b
return y.unsqueeze(1) * 255 # 转换为0-255范围
def forward(self, dist, ref):
# 保存原始数据类型
orig_dtype = dist.dtype
# 归一化处理
dist = (dist.clamp(-1, 1).to(torch.float32) + 1) / 2
ref = (ref.clamp(-1, 1).to(torch.float32) + 1) / 2
# 提取亮度分量
dist_luma = self.get_luma(dist)
ref_luma = self.get_luma(ref)
# 计算VMAF损失
vmaf_loss = 1 - self.vmaf(ref_luma, dist_luma) / 100
return vmaf_loss.to(orig_dtype)
注意事项
- 数值精度敏感:VMAF计算对数值精度较为敏感,建议使用fp32而非bf16
- 输入范围:输入视频需要归一化到0-255范围
- 亮度转换:需要正确地从RGB转换到亮度分量
- 批处理:对于视频数据需要考虑适当的时间维度处理
应用前景
这一可微分实现为视频质量增强任务开辟了新途径:
- 可以直接优化VMAF指标作为训练目标
- 支持端到端的视频超分辨率、去噪等任务
- 便于与传统计算机视觉损失函数结合使用
- 为生成式视频模型提供更符合人类感知的质量评估
总结
PyTorch可微分VMAF的实现填补了视频质量评估领域的一个重要空白,使得这一广泛认可的指标可以直接用于深度学习模型的训练过程。这一技术突破将为视频处理领域带来新的可能性,特别是在需要优化感知质量的场景下。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
242
278
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
695
369
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
882