Apache ECharts 中处理对象数组数据的两种方法
2025-04-30 21:31:18作者:苗圣禹Peter
echarts
Apache ECharts is a powerful, interactive charting and data visualization library for browser
Apache ECharts 作为一款强大的数据可视化库,提供了灵活的数据处理方式。在实际开发中,我们经常会遇到需要将包含 x 和 y 属性的对象数组转换为图表数据的情况。本文将详细介绍两种在 ECharts 中处理这种数据结构的有效方法。
方法一:使用 dataset 配置项
dataset 是 ECharts 4.0 引入的重要特性,它提供了一种声明式的数据定义方式,特别适合处理结构化数据。
实现步骤
- 准备数据格式为对象数组:
const data = [
{"x": "2024-07-18T00:00:00.000000Z", "y": 137.5},
{"x": "2024-07-18T01:00:00.000000Z", "y": 141},
// 更多数据...
];
- 在 option 中配置 dataset:
option = {
dataset: [{
source: data
}],
xAxis: {
type: 'category',
// 指定使用 dataset 中的 x 字段
encode: {
x: 'x'
}
},
yAxis: {},
series: [{
type: 'line',
// 指定使用 dataset 中的 y 字段
encode: {
y: 'y'
}
}]
};
优势特点
- 代码简洁直观,直接映射原始数据结构
- 支持复杂的数据转换和映射
- 便于维护和修改数据源
- 适合处理大数据量的情况
方法二:数据格式转换
对于更简单的场景,我们可以将对象数组转换为二维数组格式,这是 ECharts 最基础的数据格式。
实现方式
使用 JavaScript 的 map 方法进行数据转换:
const transformedData = originalData.map(item => [item.x, item.y]);
然后在 series 中直接使用转换后的数据:
option = {
xAxis: {
type: 'category'
},
yAxis: {},
series: [{
type: 'line',
data: transformedData
}]
};
适用场景
- 数据结构简单,不需要复杂映射
- 需要对数据进行预处理的情况
- 项目中使用较早版本的 ECharts(4.0 之前)
两种方法的对比与选择
-
dataset 方法更适合:
- 数据结构复杂,有多个维度
- 需要频繁切换数据源
- 使用 ECharts 4.0 及以上版本
- 需要更好的可维护性
-
数据转换方法更适合:
- 简单项目或快速原型开发
- 需要兼容旧版 ECharts
- 数据预处理逻辑复杂的情况
实际应用建议
对于时间序列数据(如示例中的时间戳),建议:
- 确保时间格式正确解析,可以在 dataset 中指定维度类型:
dataset: {
dimensions: [
{name: 'x', type: 'time'},
{name: 'y', type: 'number'}
],
source: data
}
-
对于大量数据,考虑使用 dataset 的按需加载功能
-
在需要动态更新数据时,dataset 方法通常性能更好
通过掌握这两种数据处理方法,开发者可以更灵活地在 Apache ECharts 中实现各种数据可视化需求,提高开发效率和图表性能。
echarts
Apache ECharts is a powerful, interactive charting and data visualization library for browser
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
279
暂无简介
Dart
640
147
Ascend Extension for PyTorch
Python
202
219
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
React Native鸿蒙化仓库
JavaScript
246
316
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
213
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100