Apache ECharts 中处理对象数组数据的两种方法
2025-04-30 22:07:46作者:苗圣禹Peter
echarts
Apache ECharts is a powerful, interactive charting and data visualization library for browser
Apache ECharts 作为一款强大的数据可视化库,提供了灵活的数据处理方式。在实际开发中,我们经常会遇到需要将包含 x 和 y 属性的对象数组转换为图表数据的情况。本文将详细介绍两种在 ECharts 中处理这种数据结构的有效方法。
方法一:使用 dataset 配置项
dataset 是 ECharts 4.0 引入的重要特性,它提供了一种声明式的数据定义方式,特别适合处理结构化数据。
实现步骤
- 准备数据格式为对象数组:
const data = [
{"x": "2024-07-18T00:00:00.000000Z", "y": 137.5},
{"x": "2024-07-18T01:00:00.000000Z", "y": 141},
// 更多数据...
];
- 在 option 中配置 dataset:
option = {
dataset: [{
source: data
}],
xAxis: {
type: 'category',
// 指定使用 dataset 中的 x 字段
encode: {
x: 'x'
}
},
yAxis: {},
series: [{
type: 'line',
// 指定使用 dataset 中的 y 字段
encode: {
y: 'y'
}
}]
};
优势特点
- 代码简洁直观,直接映射原始数据结构
- 支持复杂的数据转换和映射
- 便于维护和修改数据源
- 适合处理大数据量的情况
方法二:数据格式转换
对于更简单的场景,我们可以将对象数组转换为二维数组格式,这是 ECharts 最基础的数据格式。
实现方式
使用 JavaScript 的 map 方法进行数据转换:
const transformedData = originalData.map(item => [item.x, item.y]);
然后在 series 中直接使用转换后的数据:
option = {
xAxis: {
type: 'category'
},
yAxis: {},
series: [{
type: 'line',
data: transformedData
}]
};
适用场景
- 数据结构简单,不需要复杂映射
- 需要对数据进行预处理的情况
- 项目中使用较早版本的 ECharts(4.0 之前)
两种方法的对比与选择
-
dataset 方法更适合:
- 数据结构复杂,有多个维度
- 需要频繁切换数据源
- 使用 ECharts 4.0 及以上版本
- 需要更好的可维护性
-
数据转换方法更适合:
- 简单项目或快速原型开发
- 需要兼容旧版 ECharts
- 数据预处理逻辑复杂的情况
实际应用建议
对于时间序列数据(如示例中的时间戳),建议:
- 确保时间格式正确解析,可以在 dataset 中指定维度类型:
dataset: {
dimensions: [
{name: 'x', type: 'time'},
{name: 'y', type: 'number'}
],
source: data
}
-
对于大量数据,考虑使用 dataset 的按需加载功能
-
在需要动态更新数据时,dataset 方法通常性能更好
通过掌握这两种数据处理方法,开发者可以更灵活地在 Apache ECharts 中实现各种数据可视化需求,提高开发效率和图表性能。
echarts
Apache ECharts is a powerful, interactive charting and data visualization library for browser
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355