Apache Linkis 使用教程
2024-09-02 20:53:12作者:柏廷章Berta
项目介绍
Apache Linkis 构建了一个计算中间件层,用于促进上层应用与底层数据引擎之间的连接治理和编排。通过使用 Linkis 提供的标准接口(如 REST/WS/JDBC),上层应用可以轻松访问底层引擎(如 MySQL/Spark/Hive/Presto/Flink 等),并实现用户资源的互通,如统一变量、脚本、UDF、函数和资源文件等。作为一个计算中间件,Linkis 提供了强大的连接性、复用性、编排、扩展和治理能力。通过解耦应用层和引擎层,简化了复杂的网络调用关系,从而降低了整体复杂性,节省了开发和维护成本。
项目快速启动
环境准备
- JDK 1.8 或更高版本
 - Maven 3.3 或更高版本
 - Docker(可选,用于容器化部署)
 
快速部署
- 
克隆项目
git clone https://github.com/apache/linkis.git cd linkis - 
构建项目
mvn clean install -DskipTests - 
启动 Linkis
cd linkis-dist/target/linkis-x.x.x-dist ./bin/start-all.sh 
示例代码
以下是一个简单的示例,展示如何通过 Linkis 提交一个 Spark 任务:
import org.apache.linkis.httpclient.dws.authentication.StaticAuthenticationStrategy;
import org.apache.linkis.httpclient.dws.config.DWSClientConfig;
import org.apache.linkis.httpclient.dws.config.DWSClientConfigBuilder;
import org.apache.linkis.httpclient.dws.exception.DWSClientException;
import org.apache.linkis.httpclient.dws.request.JobSubmitAction;
import org.apache.linkis.httpclient.dws.response.JobExecuteResult;
import org.apache.linkis.httpclient.dws.response.JobInfoResult;
import org.apache.linkis.httpclient.dws.response.JobProgressResult;
public class LinkisExample {
    public static void main(String[] args) {
        DWSClientConfig clientConfig = ((DWSClientConfigBuilder) (new DWSClientConfigBuilder())
            .addUJESServerUrl("http://localhost:8088"))
            .connectionTimeout(30000)
            .discoveryEnabled(false)
            .discoveryFrequency(1, TimeUnit.MINUTES)
            .loadbalancerEnabled(true)
            .maxConnectionSize(5)
            .retryEnabled(false)
            .readTimeout(30000)
            .setAuthenticationStrategy(new StaticAuthenticationStrategy())
            .setDWSVersion("v1")
            .build();
        JobSubmitAction jobSubmitAction = JobSubmitAction.builder()
            .addExecuteCode("show tables")
            .setEngineType(JobSubmitAction.EngineType$.MODULE$.SPARK())
            .setUser("hadoop")
            .build();
        JobExecuteResult jobExecuteResult = new LinkisClient().submit(jobSubmitAction);
        System.out.println("Job ID: " + jobExecuteResult.taskID());
    }
}
应用案例和最佳实践
案例一:数据分析平台
某公司使用 Linkis 构建了一个数据分析平台,通过 Linkis 连接多个数据引擎(如 Spark、Hive 和 Presto),实现了数据的统一管理和分析。用户可以通过 Linkis 提供的 Web 界面提交 SQL 查询,Linkis 自动选择最合适的引擎执行查询,大大提高了数据分析的效率和灵活性。
案例二:实时数据处理
另一家公司利用 Linkis 进行实时数据处理,通过 Linkis 连接 Flink 和 Kafka,实现了实时数据流的处理和分析。Linkis 的编排能力使得复杂的实时数据处理流程变得简单和可管理。
典型生态项目
1. Apache DolphinScheduler
Apache DolphinScheduler 是一个分布式易扩展的可视化工作流任务调度平台,与 Linkis 结合使用,可以实现复杂的数据处理和分析任务的自动化调度。
2. Apache Flink
Apache Flink
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
239
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
98
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
445