Apache Linkis 使用教程
2024-09-02 05:50:50作者:柏廷章Berta
项目介绍
Apache Linkis 构建了一个计算中间件层,用于促进上层应用与底层数据引擎之间的连接治理和编排。通过使用 Linkis 提供的标准接口(如 REST/WS/JDBC),上层应用可以轻松访问底层引擎(如 MySQL/Spark/Hive/Presto/Flink 等),并实现用户资源的互通,如统一变量、脚本、UDF、函数和资源文件等。作为一个计算中间件,Linkis 提供了强大的连接性、复用性、编排、扩展和治理能力。通过解耦应用层和引擎层,简化了复杂的网络调用关系,从而降低了整体复杂性,节省了开发和维护成本。
项目快速启动
环境准备
- JDK 1.8 或更高版本
- Maven 3.3 或更高版本
- Docker(可选,用于容器化部署)
快速部署
-
克隆项目
git clone https://github.com/apache/linkis.git cd linkis
-
构建项目
mvn clean install -DskipTests
-
启动 Linkis
cd linkis-dist/target/linkis-x.x.x-dist ./bin/start-all.sh
示例代码
以下是一个简单的示例,展示如何通过 Linkis 提交一个 Spark 任务:
import org.apache.linkis.httpclient.dws.authentication.StaticAuthenticationStrategy;
import org.apache.linkis.httpclient.dws.config.DWSClientConfig;
import org.apache.linkis.httpclient.dws.config.DWSClientConfigBuilder;
import org.apache.linkis.httpclient.dws.exception.DWSClientException;
import org.apache.linkis.httpclient.dws.request.JobSubmitAction;
import org.apache.linkis.httpclient.dws.response.JobExecuteResult;
import org.apache.linkis.httpclient.dws.response.JobInfoResult;
import org.apache.linkis.httpclient.dws.response.JobProgressResult;
public class LinkisExample {
public static void main(String[] args) {
DWSClientConfig clientConfig = ((DWSClientConfigBuilder) (new DWSClientConfigBuilder())
.addUJESServerUrl("http://localhost:8088"))
.connectionTimeout(30000)
.discoveryEnabled(false)
.discoveryFrequency(1, TimeUnit.MINUTES)
.loadbalancerEnabled(true)
.maxConnectionSize(5)
.retryEnabled(false)
.readTimeout(30000)
.setAuthenticationStrategy(new StaticAuthenticationStrategy())
.setDWSVersion("v1")
.build();
JobSubmitAction jobSubmitAction = JobSubmitAction.builder()
.addExecuteCode("show tables")
.setEngineType(JobSubmitAction.EngineType$.MODULE$.SPARK())
.setUser("hadoop")
.build();
JobExecuteResult jobExecuteResult = new LinkisClient().submit(jobSubmitAction);
System.out.println("Job ID: " + jobExecuteResult.taskID());
}
}
应用案例和最佳实践
案例一:数据分析平台
某公司使用 Linkis 构建了一个数据分析平台,通过 Linkis 连接多个数据引擎(如 Spark、Hive 和 Presto),实现了数据的统一管理和分析。用户可以通过 Linkis 提供的 Web 界面提交 SQL 查询,Linkis 自动选择最合适的引擎执行查询,大大提高了数据分析的效率和灵活性。
案例二:实时数据处理
另一家公司利用 Linkis 进行实时数据处理,通过 Linkis 连接 Flink 和 Kafka,实现了实时数据流的处理和分析。Linkis 的编排能力使得复杂的实时数据处理流程变得简单和可管理。
典型生态项目
1. Apache DolphinScheduler
Apache DolphinScheduler 是一个分布式易扩展的可视化工作流任务调度平台,与 Linkis 结合使用,可以实现复杂的数据处理和分析任务的自动化调度。
2. Apache Flink
Apache Flink
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
507

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
255
299

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5