Apache Linkis 使用教程
2024-09-02 14:31:19作者:柏廷章Berta
项目介绍
Apache Linkis 构建了一个计算中间件层,用于促进上层应用与底层数据引擎之间的连接治理和编排。通过使用 Linkis 提供的标准接口(如 REST/WS/JDBC),上层应用可以轻松访问底层引擎(如 MySQL/Spark/Hive/Presto/Flink 等),并实现用户资源的互通,如统一变量、脚本、UDF、函数和资源文件等。作为一个计算中间件,Linkis 提供了强大的连接性、复用性、编排、扩展和治理能力。通过解耦应用层和引擎层,简化了复杂的网络调用关系,从而降低了整体复杂性,节省了开发和维护成本。
项目快速启动
环境准备
- JDK 1.8 或更高版本
- Maven 3.3 或更高版本
- Docker(可选,用于容器化部署)
快速部署
-
克隆项目
git clone https://github.com/apache/linkis.git cd linkis -
构建项目
mvn clean install -DskipTests -
启动 Linkis
cd linkis-dist/target/linkis-x.x.x-dist ./bin/start-all.sh
示例代码
以下是一个简单的示例,展示如何通过 Linkis 提交一个 Spark 任务:
import org.apache.linkis.httpclient.dws.authentication.StaticAuthenticationStrategy;
import org.apache.linkis.httpclient.dws.config.DWSClientConfig;
import org.apache.linkis.httpclient.dws.config.DWSClientConfigBuilder;
import org.apache.linkis.httpclient.dws.exception.DWSClientException;
import org.apache.linkis.httpclient.dws.request.JobSubmitAction;
import org.apache.linkis.httpclient.dws.response.JobExecuteResult;
import org.apache.linkis.httpclient.dws.response.JobInfoResult;
import org.apache.linkis.httpclient.dws.response.JobProgressResult;
public class LinkisExample {
public static void main(String[] args) {
DWSClientConfig clientConfig = ((DWSClientConfigBuilder) (new DWSClientConfigBuilder())
.addUJESServerUrl("http://localhost:8088"))
.connectionTimeout(30000)
.discoveryEnabled(false)
.discoveryFrequency(1, TimeUnit.MINUTES)
.loadbalancerEnabled(true)
.maxConnectionSize(5)
.retryEnabled(false)
.readTimeout(30000)
.setAuthenticationStrategy(new StaticAuthenticationStrategy())
.setDWSVersion("v1")
.build();
JobSubmitAction jobSubmitAction = JobSubmitAction.builder()
.addExecuteCode("show tables")
.setEngineType(JobSubmitAction.EngineType$.MODULE$.SPARK())
.setUser("hadoop")
.build();
JobExecuteResult jobExecuteResult = new LinkisClient().submit(jobSubmitAction);
System.out.println("Job ID: " + jobExecuteResult.taskID());
}
}
应用案例和最佳实践
案例一:数据分析平台
某公司使用 Linkis 构建了一个数据分析平台,通过 Linkis 连接多个数据引擎(如 Spark、Hive 和 Presto),实现了数据的统一管理和分析。用户可以通过 Linkis 提供的 Web 界面提交 SQL 查询,Linkis 自动选择最合适的引擎执行查询,大大提高了数据分析的效率和灵活性。
案例二:实时数据处理
另一家公司利用 Linkis 进行实时数据处理,通过 Linkis 连接 Flink 和 Kafka,实现了实时数据流的处理和分析。Linkis 的编排能力使得复杂的实时数据处理流程变得简单和可管理。
典型生态项目
1. Apache DolphinScheduler
Apache DolphinScheduler 是一个分布式易扩展的可视化工作流任务调度平台,与 Linkis 结合使用,可以实现复杂的数据处理和分析任务的自动化调度。
2. Apache Flink
Apache Flink
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
445
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
823
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
142
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19