Sapiens项目姿态估计模块的安装与使用实践指南
前言
Sapiens是Facebook Research开源的一个多模态人工智能项目,其中的姿态估计模块提供了强大的人体关键点检测功能。本文将详细介绍该模块的完整安装流程和使用方法,帮助开发者快速上手并解决常见问题。
环境准备
首先需要克隆项目仓库并创建专用环境:
git clone https://github.com/facebookresearch/sapiens.git
cd sapiens
推荐使用conda环境管理工具,执行项目提供的安装脚本:
./_install/conda.sh
conda activate sapiens
依赖安装
姿态估计模块需要安装多个Python依赖包,建议按以下顺序执行:
pip install -e ./pose
pip install -r pose/requirements/runtime.txt
pip install -r pose/requirements/mminstall.txt
pip install -U mmdet "mmcv>=2.0.0rc4, <2.2.0"
pip install tqdm
pip install -e ./pretrain
特别注意:mmcv和mmdet的版本兼容性非常重要,版本不匹配会导致运行错误。
模型下载
Sapiens提供了预训练好的姿态估计模型,可以通过Hugging Face Hub下载:
pip install -U "huggingface_hub[cli]"
SAPIENS_ROOT="$(pwd)"
mkdir -p "$SAPIENS_ROOT/checkpoints/sapiens_host/detector/checkpoints/rtmpose"
# 下载姿态检测器
huggingface-cli download facebook/sapiens-pose-bbox-detector \
rtmdet_m_8xb32-100e_coco-obj365-person-235e8209.pth \
--local-dir "$SAPIENS_ROOT/checkpoints/sapiens_host/detector/checkpoints/rtmpose"
# 下载姿态估计模型(0.3B参数版本)
huggingface-cli download noahcao/sapiens-pose-coco \
sapiens_host/pose/checkpoints/sapiens_0.3b/sapiens_0.3b_coco_best_coco_AP_796.pth \
--local-dir "$SAPIENS_ROOT/checkpoints"
项目提供了多种规模的模型(0.3B/0.6B/1.2B/2.4B),开发者可以根据计算资源选择合适的版本。
运行姿态估计
进入demo脚本目录并设置环境变量:
cd pose/scripts/demo/local/
chmod +x *
export SAPIENS_CHECKPOINT_ROOT="$SAPIENS_ROOT/checkpoints/sapiens_host"
export OUTPUT="$SAPIENS_ROOT/output"
export INPUT="$SAPIENS_ROOT/pose/demo/data/itw_videos/reel1"
CPU支持:如果需要在没有GPU的环境下运行,需要修改keypoints17.sh脚本,在第82行添加"--device="cpu"参数。
模型选择:在keypoints17.sh中取消注释所需的模型规模(如0.3b),并注释掉其他模型。
最后执行脚本:
./keypoints17.sh
常见问题解决
-
版本冲突:确保mmcv和mmdet的版本严格匹配,建议使用项目指定的版本范围。
-
可视化错误:在demo_vis.py的第192行,可能需要注释掉override_ckpt_meta=True参数。
-
模型加载失败:检查模型文件是否完整下载,路径设置是否正确。
性能优化建议
-
对于实时应用,建议使用较小的0.3B参数模型。
-
如果显存不足,可以尝试降低输入分辨率或批处理大小。
-
考虑使用TensorRT等推理加速框架优化模型性能。
结语
Sapiens的姿态估计模块提供了强大的2D人体姿态估计能力,通过本文的详细指导,开发者可以顺利完成环境搭建和模型部署。项目仍在积极开发中,建议定期关注更新以获取最新功能和性能优化。
- Ggpt-oss-20bgpt-oss-20b —— 适用于低延迟和本地或特定用途的场景(210 亿参数,其中 36 亿活跃参数)Jinja00
- Ggpt-oss-120bgpt-oss-120b是OpenAI开源的高性能大模型,专为复杂推理任务和智能代理场景设计。这款拥有1170亿参数的混合专家模型采用原生MXFP4量化技术,可单卡部署在H100 GPU上运行。它支持可调节的推理强度(低/中/高),完整思维链追溯,并内置函数调用、网页浏览等智能体能力。模型遵循Apache 2.0许可,允许自由商用和微调,特别适合需要生产级推理能力的开发者。通过Transformers、vLLM等主流框架即可快速调用,还能在消费级硬件通过Ollama运行,为AI应用开发提供强大而灵活的基础设施。【此简介由AI生成】Jinja00
- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
hello-uniapp
uni-app 是一个使用 Vue.js 开发所有前端应用的框架,开发者编写一套代码,可发布到iOS、Android、鸿蒙Next、Web(响应式)、以及各种小程序(微信/支付宝/百度/抖音/飞书/QQ/快手/钉钉/淘宝/京东/小红书)、快应用、鸿蒙元服务等多个平台Vue00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。05GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0255Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013RuoYi-Cloud-Plus
微服务管理系统 重写RuoYi-Cloud所有功能 整合 SpringCloudAlibaba、Dubbo3.0、Sa-Token、Mybatis-Plus、MQ、Warm-Flow工作流、ES、Docker 全方位升级 定期同步Java014
热门内容推荐
最新内容推荐
项目优选









