Sentence-Transformers项目:多提示数据集训练的最佳实践
2025-05-13 00:38:53作者:郁楠烈Hubert
背景概述
在Sentence-Transformers项目中,基于LLM的文本嵌入模型(如Instructor等)的训练常面临多数据集多提示场景的挑战。这类模型的特点在于:不同嵌入任务需要不同的提示词(prompt),而标准的训练流程并未明确说明如何处理这种异构提示场景。
核心问题分析
当用户需要在以下两种方案中做出选择时:
- 通过
dataset.map预处理方式为不同数据集添加对应提示 - 在训练过程中动态调整
model.default_prompt_name
经过项目维护者的确认,第一种方案才是正确选择。这是因为模型的default_prompt_name、prompt_name等参数仅影响训练完成后model.encode的推理行为,而训练过程中实际调用的是神经网络的前向计算(forward pass),提示逻辑需要显式地整合到训练数据中。
技术实现细节
数据预处理方案
推荐使用HuggingFace数据集库的map操作:
def add_prompt(example):
if "classification" in example["task_type"]:
example["text"] = "Classify this text: " + example["text"]
elif "retrieval" in example["task_type"]:
example["text"] = "Represent this for retrieval: " + example["text"]
return example
dataset = dataset.map(add_prompt)
嵌入向量池化优化
当需要从平均嵌入计算中排除提示词时,需要自定义Pooling层。关键实现要点包括:
- 继承nn.Module基类
- 在forward方法中处理attention_mask
- 实现模型保存/加载的序列化逻辑
典型实现需要:
- 通过attention_mask识别提示词位置
- 对非提示词部分的token embeddings进行加权平均
- 保持与推理时
include_prompt=False的行为一致性
训练与评估注意事项
- 评估器兼容性:部分评估器尚未原生支持提示参数,需通过设置模型默认提示来保证评估一致性
- 推理行为对齐:训练时的手动提示添加需要与推理时的
model.encode行为保持同步 - 自定义模块部署:若保留自定义Pooling层,用户端需启用
trust_remote_code=True
进阶建议
对于复杂场景,可考虑:
- 构建提示-任务类型的映射词典
- 实现动态提示选择器模块
- 在数据加载器中集成提示调度逻辑
- 添加提示有效性验证机制
通过这种设计,可以确保模型既能学习到不同任务的特异性表征,又能保持推理接口的统一性,为下游应用提供灵活的提示定制能力。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C087
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.5 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
87
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
315
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
433
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19