SecretFlow中FLModel的纵向联邦学习支持分析
概述
SecretFlow作为一款隐私计算框架,提供了多种联邦学习模式的支持。其中FLModel是框架中用于横向联邦学习的重要组件,但根据用户反馈和源码分析,我们发现FLModel目前主要针对横向数据场景设计,在纵向联邦学习场景中存在一定局限性。
FLModel的设计特点
FLModel在SecretFlow v1.6.1版本中主要表现出以下特点:
-
横向数据支持:FLModel的fit方法设计时假设数据在各参与方之间是横向划分的,即各方拥有相同的特征但不同的样本
-
数据分区处理:从错误堆栈可以看出,FLModel在处理训练数据时,默认从train_y.partitions中按设备获取分区数据,这种设计更适合横向场景
-
参数传递机制:FLModel的梯度聚合和参数更新机制基于各方模型结构相同的假设,这在纵向场景中往往不成立
纵向联邦学习的挑战
当用户尝试使用FLModel进行纵向联邦学习时会遇到几个关键问题:
-
数据结构不匹配:纵向场景下各方数据特征不同,FLModel当前的数据处理逻辑无法直接适配
-
模型结构差异:纵向学习通常需要各方使用不同的模型结构,而FLModel的联邦机制基于同构模型
-
特征对齐需求:纵向学习需要额外的特征对齐和样本匹配步骤,这在当前FLModel实现中缺失
替代解决方案
对于需要纵向联邦学习的场景,SecretFlow提供了更适合的组件:
-
Split Learning模型:SecretFlow的SLModel专为纵向场景设计,支持不同参与方使用不同的模型结构
-
混合架构:可以结合使用垂直分箱和Split Learning技术来处理纵向分区数据
-
自定义训练循环:对于复杂场景,可以基于SecretFlow的底层原语构建自定义训练流程
实践建议
-
对于纯纵向场景,建议优先考虑SLModel而非FLModel
-
如果必须使用FLModel,可以考虑在数据预处理阶段将纵向数据转换为横向表示
-
对于同时包含横向和纵向特征的混合场景,可以考虑分层联邦架构
总结
SecretFlow的FLModel组件当前主要面向横向联邦学习场景设计。对于纵向联邦学习需求,框架提供了专门的SLModel组件作为更合适的解决方案。开发者应根据实际数据分布特点选择合适的联邦学习模式,必要时可以结合多种技术构建混合解决方案。随着框架发展,未来可能会看到FLModel对纵向场景的更完善支持。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00