首页
/ MLRun v1.8.0-rc26版本发布:模型监控与向量数据库功能增强

MLRun v1.8.0-rc26版本发布:模型监控与向量数据库功能增强

2025-07-01 12:58:25作者:胡唯隽

MLRun是一个开源的机器学习运维平台,旨在简化机器学习项目的全生命周期管理。它提供了从数据准备、模型训练到部署监控的一站式解决方案,特别适合需要快速迭代和规模化部署的AI应用场景。本次发布的v1.8.0-rc26版本带来了多项重要改进,特别是在模型监控和向量数据库功能方面。

模型监控功能升级

本次版本对模型监控系统进行了多项优化。首先,系统现在能够处理特定结果名称不存在时的告警配置,这增强了监控系统的健壮性。开发团队还移除了流处理中的错误计数功能,简化了监控流程。在资源管理方面,修复了监控资源删除的问题,确保系统资源能够被正确释放。

另一个重要改进是更新了V3IO预测表的引用方式,这提升了与底层存储系统的兼容性。同时,修复了在图步骤中创建监控端点的问题,使得监控配置更加可靠。

向量数据库功能增强

向量数据库功能在本版本中获得了显著提升。现在log_document()方法中的key参数变为可选,提供了更大的使用灵活性。系统引入了新的方法来从源名称生成键值,简化了数据管理流程。此外,现在使用db_key而非key来标识工件,这一改变使得与数据库系统的交互更加标准化。

工作流与通知系统优化

在Kubernetes工作流方面,版本修复了旧版MLRun工作流运行器的镜像问题,确保向后兼容性。同时添加了一次性警告机制,提醒用户关于KFP编译器的问题。

通知系统也获得了重要修复,解决了Dask函数终端状态通知的缓存问题,使得分布式计算场景下的通知更加可靠。告警激活功能现在能够正确处理权限检查,提升了安全性。

其他改进

在功能集方面,新增了updated字段到最小格式中,提供了更完整的数据变更信息。Nuclio函数调用现在使用invoke_url而非spec.host获取调用URL,提高了可靠性。

文档方面修复了多处链接问题,提升了用户体验。系统依赖也进行了更新,包括升级了pipeline-adapters版本和minikube设置工具。

这个版本展示了MLRun平台在模型运维和数据处理方面的持续进步,为机器学习工程师提供了更强大、更稳定的工具链。这些改进将帮助团队更高效地构建、部署和维护生产级的机器学习应用。

登录后查看全文
热门项目推荐
相关项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
152
1.96 K
kernelkernel
deepin linux kernel
C
22
6
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
431
34
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
251
9
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
989
394
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
193
274
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
936
554
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
69