MLRun v1.8.0-rc26版本发布:模型监控与向量数据库功能增强
MLRun是一个开源的机器学习运维平台,旨在简化机器学习项目的全生命周期管理。它提供了从数据准备、模型训练到部署监控的一站式解决方案,特别适合需要快速迭代和规模化部署的AI应用场景。本次发布的v1.8.0-rc26版本带来了多项重要改进,特别是在模型监控和向量数据库功能方面。
模型监控功能升级
本次版本对模型监控系统进行了多项优化。首先,系统现在能够处理特定结果名称不存在时的告警配置,这增强了监控系统的健壮性。开发团队还移除了流处理中的错误计数功能,简化了监控流程。在资源管理方面,修复了监控资源删除的问题,确保系统资源能够被正确释放。
另一个重要改进是更新了V3IO预测表的引用方式,这提升了与底层存储系统的兼容性。同时,修复了在图步骤中创建监控端点的问题,使得监控配置更加可靠。
向量数据库功能增强
向量数据库功能在本版本中获得了显著提升。现在log_document()方法中的key参数变为可选,提供了更大的使用灵活性。系统引入了新的方法来从源名称生成键值,简化了数据管理流程。此外,现在使用db_key而非key来标识工件,这一改变使得与数据库系统的交互更加标准化。
工作流与通知系统优化
在Kubernetes工作流方面,版本修复了旧版MLRun工作流运行器的镜像问题,确保向后兼容性。同时添加了一次性警告机制,提醒用户关于KFP编译器的问题。
通知系统也获得了重要修复,解决了Dask函数终端状态通知的缓存问题,使得分布式计算场景下的通知更加可靠。告警激活功能现在能够正确处理权限检查,提升了安全性。
其他改进
在功能集方面,新增了updated字段到最小格式中,提供了更完整的数据变更信息。Nuclio函数调用现在使用invoke_url而非spec.host获取调用URL,提高了可靠性。
文档方面修复了多处链接问题,提升了用户体验。系统依赖也进行了更新,包括升级了pipeline-adapters版本和minikube设置工具。
这个版本展示了MLRun平台在模型运维和数据处理方面的持续进步,为机器学习工程师提供了更强大、更稳定的工具链。这些改进将帮助团队更高效地构建、部署和维护生产级的机器学习应用。
- QQwen3-Omni-30B-A3B-InstructQwen3-Omni是多语言全模态模型,原生支持文本、图像、音视频输入,并实时生成语音。00
community本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息010
GitCode-文心大模型-智源研究院AI应用开发大赛GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0274
get_jobs💼【AI找工作助手】全平台自动投简历脚本:(boss、前程无忧、猎聘、拉勾、智联招聘)Java01
Hunyuan3D-2Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00