Robosuite中基于delta控制的演示数据收集方法
2025-07-10 11:39:15作者:卓炯娓
概述
在机器人仿真环境Robosuite中,演示数据的收集对于强化学习算法的训练至关重要。本文详细介绍了在delta控制模式下(即control_delta=True)如何正确收集演示数据,特别是在Lift任务中使用UR5e机械臂的场景。
delta控制模式的基本原理
delta控制模式与绝对控制模式(control_delta=False)的主要区别在于动作指令的表示方式:
- 绝对控制模式:动作指令直接指定末端执行器的目标位置和姿态
- delta控制模式:动作指令指定的是相对于当前状态的增量变化
在delta控制模式下,控制器期望接收的是相对于当前末端执行器状态的增量变化,而不是绝对位置。这种模式更接近真实机器人的控制方式,因为实际机器人通常通过接收相对运动指令来工作。
正确的delta控制实现方法
要实现有效的delta控制演示收集,关键是要正确计算当前状态与目标状态之间的差值。以下是核心实现步骤:
-
获取当前末端状态:
robot = env.robots[0] controller = robot.controller cur_pose = np.array([ *controller.ee_pos, *TU.quat2axisangle(TU.mat2quat(controller.ee_ori_mat)) ]) -
计算目标状态:
pick_pos = env.sim.data.body_xpos[env.sim.model.body_name2id(env.cube.root_body)] final_angle = TU.quat2axisangle(TU.mat2quat( rotation_matrix(0.5*np.pi, axis="x") @ rotation_matrix(0, axis="y") @ rotation_matrix(0, axis='z') )) ref_pose = np.array([*pick_pos, *final_angle]) -
计算增量动作:
delta = ref_pose - cur_pose action = np.concatenate((delta, np.array([gripper_pos])))
常见问题与解决方案
在实际实现中,开发者可能会遇到以下问题:
-
末端执行器移动缓慢或不准确:
- 原因:增量值过小或没有适当缩放
- 解决方案:对位置增量进行适当放大(如乘以2-5倍)
-
机械臂异常旋转:
- 原因:姿态增量的计算不准确
- 解决方案:确保使用正确的旋转矩阵转换,并考虑使用欧拉角或轴角表示
-
收敛困难:
- 原因:阈值设置不当
- 解决方案:根据任务需求调整收敛阈值(通常0.02-0.05为宜)
最佳实践建议
- 分阶段控制:将整个任务分解为多个阶段(接近、抓取、提升等),每个阶段单独控制
- 渐进式目标:使用多个中间目标点,而不是直接从起点到终点
- 状态检查:在每个步骤后检查当前状态与目标状态的差异
- 异常处理:设置最大迭代次数防止无限循环
与离线强化学习的结合
收集到高质量的演示数据后,可以用于离线强化学习算法的训练。需要注意的是:
- 确保动作空间与算法预期一致
- 状态表示要包含足够的环境信息
- 奖励函数的设计应与任务目标匹配
通过遵循上述方法和建议,开发者可以在Robosuite中有效地收集高质量的演示数据,为后续的机器人学习算法提供可靠的训练基础。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210