Robosuite中基于delta控制的演示数据收集方法
2025-07-10 08:30:38作者:卓炯娓
概述
在机器人仿真环境Robosuite中,演示数据的收集对于强化学习算法的训练至关重要。本文详细介绍了在delta控制模式下(即control_delta=True
)如何正确收集演示数据,特别是在Lift任务中使用UR5e机械臂的场景。
delta控制模式的基本原理
delta控制模式与绝对控制模式(control_delta=False
)的主要区别在于动作指令的表示方式:
- 绝对控制模式:动作指令直接指定末端执行器的目标位置和姿态
- delta控制模式:动作指令指定的是相对于当前状态的增量变化
在delta控制模式下,控制器期望接收的是相对于当前末端执行器状态的增量变化,而不是绝对位置。这种模式更接近真实机器人的控制方式,因为实际机器人通常通过接收相对运动指令来工作。
正确的delta控制实现方法
要实现有效的delta控制演示收集,关键是要正确计算当前状态与目标状态之间的差值。以下是核心实现步骤:
-
获取当前末端状态:
robot = env.robots[0] controller = robot.controller cur_pose = np.array([ *controller.ee_pos, *TU.quat2axisangle(TU.mat2quat(controller.ee_ori_mat)) ])
-
计算目标状态:
pick_pos = env.sim.data.body_xpos[env.sim.model.body_name2id(env.cube.root_body)] final_angle = TU.quat2axisangle(TU.mat2quat( rotation_matrix(0.5*np.pi, axis="x") @ rotation_matrix(0, axis="y") @ rotation_matrix(0, axis='z') )) ref_pose = np.array([*pick_pos, *final_angle])
-
计算增量动作:
delta = ref_pose - cur_pose action = np.concatenate((delta, np.array([gripper_pos])))
常见问题与解决方案
在实际实现中,开发者可能会遇到以下问题:
-
末端执行器移动缓慢或不准确:
- 原因:增量值过小或没有适当缩放
- 解决方案:对位置增量进行适当放大(如乘以2-5倍)
-
机械臂异常旋转:
- 原因:姿态增量的计算不准确
- 解决方案:确保使用正确的旋转矩阵转换,并考虑使用欧拉角或轴角表示
-
收敛困难:
- 原因:阈值设置不当
- 解决方案:根据任务需求调整收敛阈值(通常0.02-0.05为宜)
最佳实践建议
- 分阶段控制:将整个任务分解为多个阶段(接近、抓取、提升等),每个阶段单独控制
- 渐进式目标:使用多个中间目标点,而不是直接从起点到终点
- 状态检查:在每个步骤后检查当前状态与目标状态的差异
- 异常处理:设置最大迭代次数防止无限循环
与离线强化学习的结合
收集到高质量的演示数据后,可以用于离线强化学习算法的训练。需要注意的是:
- 确保动作空间与算法预期一致
- 状态表示要包含足够的环境信息
- 奖励函数的设计应与任务目标匹配
通过遵循上述方法和建议,开发者可以在Robosuite中有效地收集高质量的演示数据,为后续的机器人学习算法提供可靠的训练基础。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++097AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
202
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
61
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
83

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133