clml 的安装和配置教程
2025-05-30 09:04:01作者:咎岭娴Homer
1. 项目的基础介绍和主要的编程语言
CLML(Common Lisp Machine Learning)是一个用Common Lisp编写的统计机器学习库。它旨在提供高性能和大规模数据处理的能力。CLML支持多种机器学习方法,包括分类、聚类、降维和时间序列分析等。这个库的开发目标是使其能够在不同的Common Lisp实现上运行,包括SBCL、CCL、LispWorks和Allegro Common Lisp。
主要编程语言:Common Lisp
2. 项目使用的关键技术和框架
- 机器学习算法:包括线性回归、逻辑回归、朴素贝叶斯、支持向量机(SVM)、K-均值聚类等多种算法。
- 数据处理:提供数据预处理、缺失值处理等功能。
- 图形处理:包含图形异常检测、图形中心性分析等图形处理工具。
- 数学运算:包括矩阵运算、数值分析等数学工具。
CLML不依赖外部库,而是使用内置的Common Lisp功能来实现这些技术。
3. 项目安装和配置的准备工作和详细的安装步骤
准备工作
- 确保你的操作系统是Windows、Linux、BSD或其衍生版本,以兼容POSIX。
- 安装Common Lisp环境,推荐使用SBCL,因为它是最稳定和支持最广泛的平台。
- 确保你的Common Lisp环境配置了至少2560K的堆空间。
对于SBCL,可以通过以下命令设置堆空间:
sbcl --dynamic-space-size 2560
如果你使用roswell(一个Common Lisp的运行环境),可以通过以下命令设置:
ros dynamic-space-size=2560 run
安装步骤
方式一:使用Quicklisp
- 克隆项目仓库到本地:
git clone https://github.com/mmaul/clml.git
-
将克隆下来的仓库代码放到
~/quicklisp/local-projects目录下。 -
启动Lisp环境,然后输入以下命令加载CLML:
(ql:quickload :clml :verbose t)
方式二:不使用Quicklisp
- 克隆项目仓库到本地:
git clone https://github.com/mmaul/clml.git
-
将克隆下来的代码放到一个Lisp环境能够搜索到的路径下,比如
~/common-lisp。 -
启动Lisp环境,然后输入以下命令加载CLML:
(asdf:load-system :clml)
按照上述步骤,你应该能够成功安装和配置CLML,开始使用它进行机器学习项目的开发。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
413
3.18 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
690
325
Ascend Extension for PyTorch
Python
229
258
暂无简介
Dart
679
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
346
147