LLaMA-Factory项目中保存checkpoint后loss突降为0的问题分析与解决方案
问题现象
在使用LLaMA-Factory项目进行大模型训练时,部分用户反馈在保存checkpoint后,下一个训练步骤的loss值会突然降为0。这种现象不仅影响训练过程的监控,也可能暗示着模型训练过程中存在潜在问题。
问题根源分析
经过技术团队深入排查,发现问题与DeepSpeed配置中的通信优化参数有关。具体来说:
-
通信重叠机制:DeepSpeed默认启用了
overlap_comm参数(设置为true),该设计初衷是为了提高训练效率,通过重叠计算和通信操作来减少整体训练时间。 -
保存检查点时的冲突:当模型保存checkpoint时,这种通信重叠机制可能与保存操作产生冲突,导致梯度计算或损失值记录出现异常。
-
数值表现:这种冲突在训练日志中最直观的表现就是保存checkpoint后的下一个step中,loss值突然变为0,这显然不符合正常的训练曲线变化规律。
解决方案
针对这一问题,推荐采用以下配置调整:
{
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": "auto",
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": "auto",
"eps": "auto",
"weight_decay": "auto"
}
},
"overlap_comm": false, # 关键修改点
"fp16": {
"enabled": "auto"
}
}
技术原理详解
-
通信重叠机制:在分布式训练中,节点间的梯度同步是耗时的操作。
overlap_comm设置为true时,DeepSpeed会尝试在前向传播完成前就开始梯度同步的准备工作,以节省时间。 -
检查点保存机制:保存模型检查点需要确保所有计算和通信操作都已完成,以获取一致的模型状态。当通信重叠启用时,可能会与保存操作产生竞争条件。
-
稳定性与性能权衡:关闭通信重叠虽然可能略微降低训练速度(通常在5%以内),但能显著提高训练过程的稳定性,特别是在需要频繁保存检查点的场景下。
最佳实践建议
-
监控训练曲线:即使解决了这个问题,仍建议密切关注训练曲线,确保没有其他异常现象。
-
梯度检查:可以定期检查梯度分布,确认没有梯度消失或爆炸的情况。
-
学习率调整:如果观察到训练不稳定,可以适当降低学习率或使用学习率warmup策略。
-
混合精度训练:在支持的情况下,建议启用混合精度训练以提高效率,但要确保scaler设置合理。
总结
LLaMA-Factory项目中遇到的这个特定问题,揭示了深度学习框架底层优化与实际应用场景之间可能存在的微妙冲突。通过调整DeepSpeed配置,我们可以在保持训练稳定性的同时,只牺牲极少的性能。这提醒我们在使用任何高级训练框架时,都需要深入理解其底层机制,才能更好地驾驭和优化训练过程。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0123
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00