TruLens项目中的反馈函数NaN结果问题分析与解决方案
2025-07-01 09:01:42作者:翟萌耘Ralph
问题背景
在使用TruLens项目进行应用评估时,开发者遇到了反馈函数结果不一致的问题。具体表现为四个自定义反馈函数(f_similarity、f_qa_relevance、f_context_relevance和f_groundedness_cot)在Snowflake中生成的结果时有时无,有时甚至会出现失败错误。部分反馈结果在leaderboard_df中显示为NaN值,影响了评估的准确性和可靠性。
问题现象
开发者定义了四个反馈函数用于评估应用表现,但在实际运行中发现:
- 反馈结果在Snowflake中显示不一致
 - 部分结果缺失
 - 部分反馈被标记为失败并伴随错误
 - 在打印leaderboard_df时,部分反馈显示为NaN
 
技术分析
可能原因
- 计算时间不足:反馈函数计算可能需要较长时间,特别是在使用LLM模型时
 - 线程管理问题:错误日志显示"cannot schedule new futures after interpreter shutdown",表明线程池在解释器关闭后仍尝试提交任务
 - 模型兼容性问题:使用Gemini模型可能导致的性能问题
 - 依赖版本冲突:snowflake-sqlalchemy版本可能导致兼容性问题
 
错误日志分析
从错误日志中可以看到两个主要问题:
- 线程池问题:当解释器开始关闭时,仍有新任务尝试提交到线程池
 - 请求失败:端点请求多次失败,特别是在使用Cortex端点时
 
解决方案
临时解决方案
- 增加等待时间:在获取记录和反馈前等待足够时间(15分钟以上)
 - 使用"with_app"反馈模式:确保反馈在应用响应后计算完成
 
TruCustomApp(app, 
    feedback_mode="with_app",
)
长期解决方案
- 使用Snowflake服务器端反馈:通过启用服务器端计算提高性能
 
connection_params = {
    "init_server_side": True  # 启用服务器端反馈函数
}
- 使用Cortex反馈提供者:对于支持的模型,使用Snowflake内置的Cortex提供者
 
provider = Cortex(
    snowpark_session,
    model_engine="mistral-large2",
)
- 版本降级:将snowflake-sqlalchemy降级到1.7.1版本
 
模型选择建议
- 避免使用Gemini模型(当前不支持Cortex端点)
 - 考虑使用Cortex支持的模型,如mistral-large2
 - 测试不同模型的性能表现
 
最佳实践
- 监控反馈计算状态:实现状态检查机制,确保所有反馈计算完成
 - 错误处理:添加健壮的错误处理逻辑,捕获并记录反馈计算异常
 - 性能基准测试:对不同配置进行性能测试,确定最优设置
 - 依赖管理:保持依赖版本兼容性,特别是与Snowflake相关的库
 
结论
TruLens项目中的反馈函数NaN结果问题通常由计算资源不足、线程管理问题或模型兼容性引起。通过合理配置反馈模式、选择适当的模型提供者以及管理依赖版本,可以有效解决这些问题。对于性能要求高的场景,推荐使用Snowflake服务器端反馈计算以获得最佳体验。开发者应根据具体需求选择最适合的解决方案组合。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443