TruLens项目中的反馈函数NaN结果问题分析与解决方案
2025-07-01 12:03:02作者:翟萌耘Ralph
问题背景
在使用TruLens项目进行应用评估时,开发者遇到了反馈函数结果不一致的问题。具体表现为四个自定义反馈函数(f_similarity、f_qa_relevance、f_context_relevance和f_groundedness_cot)在Snowflake中生成的结果时有时无,有时甚至会出现失败错误。部分反馈结果在leaderboard_df中显示为NaN值,影响了评估的准确性和可靠性。
问题现象
开发者定义了四个反馈函数用于评估应用表现,但在实际运行中发现:
- 反馈结果在Snowflake中显示不一致
- 部分结果缺失
- 部分反馈被标记为失败并伴随错误
- 在打印leaderboard_df时,部分反馈显示为NaN
技术分析
可能原因
- 计算时间不足:反馈函数计算可能需要较长时间,特别是在使用LLM模型时
- 线程管理问题:错误日志显示"cannot schedule new futures after interpreter shutdown",表明线程池在解释器关闭后仍尝试提交任务
- 模型兼容性问题:使用Gemini模型可能导致的性能问题
- 依赖版本冲突:snowflake-sqlalchemy版本可能导致兼容性问题
错误日志分析
从错误日志中可以看到两个主要问题:
- 线程池问题:当解释器开始关闭时,仍有新任务尝试提交到线程池
- 请求失败:端点请求多次失败,特别是在使用Cortex端点时
解决方案
临时解决方案
- 增加等待时间:在获取记录和反馈前等待足够时间(15分钟以上)
- 使用"with_app"反馈模式:确保反馈在应用响应后计算完成
TruCustomApp(app,
feedback_mode="with_app",
)
长期解决方案
- 使用Snowflake服务器端反馈:通过启用服务器端计算提高性能
connection_params = {
"init_server_side": True # 启用服务器端反馈函数
}
- 使用Cortex反馈提供者:对于支持的模型,使用Snowflake内置的Cortex提供者
provider = Cortex(
snowpark_session,
model_engine="mistral-large2",
)
- 版本降级:将snowflake-sqlalchemy降级到1.7.1版本
模型选择建议
- 避免使用Gemini模型(当前不支持Cortex端点)
- 考虑使用Cortex支持的模型,如mistral-large2
- 测试不同模型的性能表现
最佳实践
- 监控反馈计算状态:实现状态检查机制,确保所有反馈计算完成
- 错误处理:添加健壮的错误处理逻辑,捕获并记录反馈计算异常
- 性能基准测试:对不同配置进行性能测试,确定最优设置
- 依赖管理:保持依赖版本兼容性,特别是与Snowflake相关的库
结论
TruLens项目中的反馈函数NaN结果问题通常由计算资源不足、线程管理问题或模型兼容性引起。通过合理配置反馈模式、选择适当的模型提供者以及管理依赖版本,可以有效解决这些问题。对于性能要求高的场景,推荐使用Snowflake服务器端反馈计算以获得最佳体验。开发者应根据具体需求选择最适合的解决方案组合。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882