Apache Druid版本升级后查询性能下降问题分析与解决方案
2025-05-16 05:36:19作者:平淮齐Percy
问题背景
在将Apache Druid从22版本升级到27版本后,用户遇到了一个显著的查询性能退化问题。一个原本在5秒内完成的查询,在升级后执行时间延长至300秒以上。该查询针对一个包含20亿行数据的表,主要操作包括条件过滤、聚合计算和排序。
问题现象
查询SQL示例:
SELECT
id,
sum(val)/30 as l30d_ado
FROM mp
WHERE country = 'xx'
AND (is_cross_border = 1 OR id IN (570092232, 664177432, ...))
AND __time BETWEEN '2025-03-08 17:00:00' AND '2025-04-07 17:00:00'
GROUP BY id
ORDER BY l30d_ado DESC
关键发现:
- 在22版本中,EXPLAIN显示使用了高效的IN过滤器
- 在27版本中,EXPLAIN显示生成了大量BOUND过滤器
- 数据类型显示差异:22版本显示为BIGINT,27版本显示为VARCHAR
根本原因分析
1. 数据类型合并策略变更
在22版本中,Druid采用"最新区间"策略确定列类型,即优先使用最新segment中的类型定义。而在27版本中,默认改为"最小限制"策略,当遇到类型冲突时(如STRING和LONG),会选择STRING类型。
这种变化源于27版本引入的新配置项druid.sql.planner.metadataColumnTypeMergePolicy,其默认值从latestInterval改为leastRestrictive。
2. 查询计划生成差异
在27版本中,由于列类型被识别为STRING,导致以下问题:
- IN条件无法被优化为高效的IN过滤器
- 生成了大量独立的BOUND过滤器
- 查询计划生成时间显著增加
具体来说,查询优化器在以下环节出现问题:
- 无法将BOUND过滤器转换为SELECTOR过滤器
- 进而无法将多个SELECTOR过滤器合并为IN过滤器
解决方案
临时解决方案
设置以下配置恢复22版本行为:
druid.sql.planner.metadataColumnTypeMergePolicy=latestInterval
长期建议
- 统一数据类型定义:确保批处理和实时摄取任务使用一致的列类型定义
- 升级到最新版本:32版本及以后对IN过滤器的处理有显著改进
- 监控配置变更:关注版本升级说明中的"行为变更"部分
技术深度解析
查询优化器工作原理
Druid查询优化器在处理IN条件时经历多个阶段:
- SQL解析阶段:识别IN操作符
- 转换为BOUND过滤器
- 尝试转换为SELECTOR过滤器
- 合并多个SELECTOR过滤器为IN过滤器
在27版本中,由于类型系统变更,第3阶段的条件判断失败:
bound.getOrdering().equals(comparator) // 返回false
因为bound使用数值比较器,而comparator基于STRING类型生成字符串比较器。
性能影响分析
大量BOUND过滤器导致:
- 查询计划生成时间增加
- 序列化/反序列化开销增大
- 过滤计算效率降低
相比之下,IN过滤器可以:
- 批量处理值列表
- 使用更高效的查找结构
- 减少网络传输量
最佳实践建议
- 升级前测试:在测试环境验证关键查询性能
- 审查数据类型:确保批处理和实时任务定义一致
- 关注版本说明:特别注意标记为"行为变更"的更新
- 查询优化:避免使用超长IN列表,考虑使用临时表或JOIN替代
总结
这次性能问题揭示了Druid类型系统和查询优化器之间的微妙交互。通过深入分析版本差异和内部机制,我们不仅找到了解决方案,也加深了对Druid查询处理流程的理解。对于使用Druid的企业,建立完善的升级测试流程和性能基准至关重要。
未来版本的Druid(32+)已经改进了数值IN过滤器的处理,建议用户在适当时候规划升级,以获得更好的查询性能。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
476
3.54 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
94
暂无简介
Dart
726
175
React Native鸿蒙化仓库
JavaScript
287
339
Ascend Extension for PyTorch
Python
284
317
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19