Apache Druid版本升级后查询性能下降问题分析与解决方案
2025-05-16 15:03:11作者:平淮齐Percy
问题背景
在将Apache Druid从22版本升级到27版本后,用户遇到了一个显著的查询性能退化问题。一个原本在5秒内完成的查询,在升级后执行时间延长至300秒以上。该查询针对一个包含20亿行数据的表,主要操作包括条件过滤、聚合计算和排序。
问题现象
查询SQL示例:
SELECT
id,
sum(val)/30 as l30d_ado
FROM mp
WHERE country = 'xx'
AND (is_cross_border = 1 OR id IN (570092232, 664177432, ...))
AND __time BETWEEN '2025-03-08 17:00:00' AND '2025-04-07 17:00:00'
GROUP BY id
ORDER BY l30d_ado DESC
关键发现:
- 在22版本中,EXPLAIN显示使用了高效的IN过滤器
- 在27版本中,EXPLAIN显示生成了大量BOUND过滤器
- 数据类型显示差异:22版本显示为BIGINT,27版本显示为VARCHAR
根本原因分析
1. 数据类型合并策略变更
在22版本中,Druid采用"最新区间"策略确定列类型,即优先使用最新segment中的类型定义。而在27版本中,默认改为"最小限制"策略,当遇到类型冲突时(如STRING和LONG),会选择STRING类型。
这种变化源于27版本引入的新配置项druid.sql.planner.metadataColumnTypeMergePolicy
,其默认值从latestInterval
改为leastRestrictive
。
2. 查询计划生成差异
在27版本中,由于列类型被识别为STRING,导致以下问题:
- IN条件无法被优化为高效的IN过滤器
- 生成了大量独立的BOUND过滤器
- 查询计划生成时间显著增加
具体来说,查询优化器在以下环节出现问题:
- 无法将BOUND过滤器转换为SELECTOR过滤器
- 进而无法将多个SELECTOR过滤器合并为IN过滤器
解决方案
临时解决方案
设置以下配置恢复22版本行为:
druid.sql.planner.metadataColumnTypeMergePolicy=latestInterval
长期建议
- 统一数据类型定义:确保批处理和实时摄取任务使用一致的列类型定义
- 升级到最新版本:32版本及以后对IN过滤器的处理有显著改进
- 监控配置变更:关注版本升级说明中的"行为变更"部分
技术深度解析
查询优化器工作原理
Druid查询优化器在处理IN条件时经历多个阶段:
- SQL解析阶段:识别IN操作符
- 转换为BOUND过滤器
- 尝试转换为SELECTOR过滤器
- 合并多个SELECTOR过滤器为IN过滤器
在27版本中,由于类型系统变更,第3阶段的条件判断失败:
bound.getOrdering().equals(comparator) // 返回false
因为bound使用数值比较器,而comparator基于STRING类型生成字符串比较器。
性能影响分析
大量BOUND过滤器导致:
- 查询计划生成时间增加
- 序列化/反序列化开销增大
- 过滤计算效率降低
相比之下,IN过滤器可以:
- 批量处理值列表
- 使用更高效的查找结构
- 减少网络传输量
最佳实践建议
- 升级前测试:在测试环境验证关键查询性能
- 审查数据类型:确保批处理和实时任务定义一致
- 关注版本说明:特别注意标记为"行为变更"的更新
- 查询优化:避免使用超长IN列表,考虑使用临时表或JOIN替代
总结
这次性能问题揭示了Druid类型系统和查询优化器之间的微妙交互。通过深入分析版本差异和内部机制,我们不仅找到了解决方案,也加深了对Druid查询处理流程的理解。对于使用Druid的企业,建立完善的升级测试流程和性能基准至关重要。
未来版本的Druid(32+)已经改进了数值IN过滤器的处理,建议用户在适当时候规划升级,以获得更好的查询性能。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++023Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0279Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程视频测验中的Tab键导航问题解析2 freeCodeCamp论坛排行榜项目中的错误日志规范要求3 freeCodeCamp音乐播放器项目中的函数调用问题解析4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析7 freeCodeCamp课程页面空白问题的技术分析与解决方案8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
156
2 K

deepin linux kernel
C
22
6

Ascend Extension for PyTorch
Python
38
72

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
519
50

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
943
556

React Native鸿蒙化仓库
C++
196
279

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
993
396

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
361
12

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
71