Apache Druid版本升级后查询性能下降问题分析与解决方案
2025-05-16 16:34:03作者:平淮齐Percy
问题背景
在将Apache Druid从22版本升级到27版本后,用户遇到了一个显著的查询性能退化问题。一个原本在5秒内完成的查询,在升级后执行时间延长至300秒以上。该查询针对一个包含20亿行数据的表,主要操作包括条件过滤、聚合计算和排序。
问题现象
查询SQL示例:
SELECT
id,
sum(val)/30 as l30d_ado
FROM mp
WHERE country = 'xx'
AND (is_cross_border = 1 OR id IN (570092232, 664177432, ...))
AND __time BETWEEN '2025-03-08 17:00:00' AND '2025-04-07 17:00:00'
GROUP BY id
ORDER BY l30d_ado DESC
关键发现:
- 在22版本中,EXPLAIN显示使用了高效的IN过滤器
- 在27版本中,EXPLAIN显示生成了大量BOUND过滤器
- 数据类型显示差异:22版本显示为BIGINT,27版本显示为VARCHAR
根本原因分析
1. 数据类型合并策略变更
在22版本中,Druid采用"最新区间"策略确定列类型,即优先使用最新segment中的类型定义。而在27版本中,默认改为"最小限制"策略,当遇到类型冲突时(如STRING和LONG),会选择STRING类型。
这种变化源于27版本引入的新配置项druid.sql.planner.metadataColumnTypeMergePolicy
,其默认值从latestInterval
改为leastRestrictive
。
2. 查询计划生成差异
在27版本中,由于列类型被识别为STRING,导致以下问题:
- IN条件无法被优化为高效的IN过滤器
- 生成了大量独立的BOUND过滤器
- 查询计划生成时间显著增加
具体来说,查询优化器在以下环节出现问题:
- 无法将BOUND过滤器转换为SELECTOR过滤器
- 进而无法将多个SELECTOR过滤器合并为IN过滤器
解决方案
临时解决方案
设置以下配置恢复22版本行为:
druid.sql.planner.metadataColumnTypeMergePolicy=latestInterval
长期建议
- 统一数据类型定义:确保批处理和实时摄取任务使用一致的列类型定义
- 升级到最新版本:32版本及以后对IN过滤器的处理有显著改进
- 监控配置变更:关注版本升级说明中的"行为变更"部分
技术深度解析
查询优化器工作原理
Druid查询优化器在处理IN条件时经历多个阶段:
- SQL解析阶段:识别IN操作符
- 转换为BOUND过滤器
- 尝试转换为SELECTOR过滤器
- 合并多个SELECTOR过滤器为IN过滤器
在27版本中,由于类型系统变更,第3阶段的条件判断失败:
bound.getOrdering().equals(comparator) // 返回false
因为bound使用数值比较器,而comparator基于STRING类型生成字符串比较器。
性能影响分析
大量BOUND过滤器导致:
- 查询计划生成时间增加
- 序列化/反序列化开销增大
- 过滤计算效率降低
相比之下,IN过滤器可以:
- 批量处理值列表
- 使用更高效的查找结构
- 减少网络传输量
最佳实践建议
- 升级前测试:在测试环境验证关键查询性能
- 审查数据类型:确保批处理和实时任务定义一致
- 关注版本说明:特别注意标记为"行为变更"的更新
- 查询优化:避免使用超长IN列表,考虑使用临时表或JOIN替代
总结
这次性能问题揭示了Druid类型系统和查询优化器之间的微妙交互。通过深入分析版本差异和内部机制,我们不仅找到了解决方案,也加深了对Druid查询处理流程的理解。对于使用Druid的企业,建立完善的升级测试流程和性能基准至关重要。
未来版本的Druid(32+)已经改进了数值IN过滤器的处理,建议用户在适当时候规划升级,以获得更好的查询性能。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
JavaWeb企业门户网站源码 - 企业级门户系统开发指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 WebVideoDownloader:高效网页视频抓取工具全面使用指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
231
2.32 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
78

暂无简介
Dart
532
117

React Native鸿蒙化仓库
JavaScript
216
291

Ascend Extension for PyTorch
Python
76
106

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
993
588

仓颉编程语言测试用例。
Cangjie
34
61

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
130
648